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Outline ® Continual Learning

® CL for Edge Devices
® Distributed CL




Introduction to
Continual Learning



Continual Learning

CL = Incremental Learning from a non-stationary stream
+ environment information: task labels, task boundaries, ...
+ constraints: computational/memory limits, privacy, ...
+ metrics: minimize forgetting, maximize transfer, ...

Suggested review:

T. Lesort et al. “Continual Learning for
Robotics: Definition, Framework, Learning
Strategies, Opportunities and Challenges.”
Information Fusion.
https://doi.org/10.1016/.inffus.2019.12.004.

Continual Learning



https://doi.org/10.1016/j.inffus.2019.12.004

Environment Information — Nomenclature

Different streams require different methods

Stream: A list of experiences, each providing a batch of data and
some additional information (e.g. task labels)

Batch/Online: How much data do we have in each experience?
Class/Domain-incremental: Do we know the type of shifts?

Do we know when the shifts happen?

Do we have task labels at training/inference time?
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Three Common Scenarios

Domain-incremental: each experience provides
new instances for old classes. Old instances are
never seen again (in the training stream).
Class-Incremental: each experience provides new
classes. Old classes are never revisited (in the
training stream).

Task-Incremental: each experience provides task
labels

task-aware/task-agnostic to highlight presence of
task labels

Ven, Gido M. van de, and Andreas S. Tolias. “Three Scenarios for Continual Learning.”

Permuted MNIST
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Arxiv Preprint, April 15, 2019. hiips://doi.org/10.48550/arXiv.1904.07734.
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“Catastrophic
Forgetting”

Deep neural networks completely and abruptly forget previously
learned information upon learning new information.




Catastrophic Forgetting
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Kirkpatrick, J. et al. “Overcoming Catastrophic Forgetting in Neural Networks.” PNAS, 2017, 201611835.



Replay
@® Keep a buffer of old
samples

@® Rehearse old samples

--- data stream

acceptance

[ )
/;\\ Din probability

dropped points

Reservoir Sampling

Methodologies

Regularization

@® Regularize the model
to balance learning
and forgetting

— Low error for task B == EWC

= Low error for task A = L2
== no penalty

Elastic Weight Consolidation

Image from https://towardsdatascience.com/reservoir-sampling-for-efficient-stream-processing-97f47f85c11b

Architectural

® Expandthe model
over time with new
units/layers

‘ output, l oulpul, l oulputy |

Progressive Neural Networks




CL for Edge Devices



CL for Edge Devices

Applications

® Model personalization
® Wearable sensors

® Stream of videos

Edge devices bring their own constraints

® Privacy: often we cannot save the user’s data

® Efficiency: energy, memory, and computational power are limited
resources

@® Latency: often require online training and predictions



Continuous Object Recognition: COReb50

@® Continuous Object Recognition
O 50 classes
O  Short videos of object manipulation with different background
O Temporal coherence from videos

® Many scenarios: batch, online, with repetitions.
@® Advantages: online, realistic streams

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017.




CL with Repetitions

Real world problems have repetitions of

concepts and imbalanced concepts ko e B
A natural form of replay

Popular benchmark (the three
scenarios) may provide a skewed
perception of performance of a method ) o
CIR: Synthetic generator to simulate " NombsnoFekpedencestll
streams with repetitions and control the

difficulty of the benchmark

CIR

Number of Slots (K)
N
o

=
o

H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 2023. https://doi.org/10.48550/arXiv.2301.11396.
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CL with Repetitions — Results

Repetitions help, even with naive ) o

finetuning oo |

Models change less and less over ‘.

time Bl
o Stability may come for free at scale | R

Frequency-Aware Replay: With o+ =i M

Accuracy
o
N

imbalanced streams correcting the W

imbalance with the replay buffer
helpS o 20 E:geriegge 80 100

Figure 11: Accuracy of Infrequent
Classes.
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H. Hemati et al. “Class-Incremental Learning with Repetition.” CoLLAs 2023. https://doi.org/10.48550/arXiv.2301.11396.
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CL Methods for Edge Devices

Online CL methods learn from small mini-batches (with replay)
Rehersal-free CL methods avoid storing past data to ensure
privacy

CL methods can exploit randomized networks and pretrained
models



Efficiency — Replay with Class-Balanced Reservoir Sampling

Rehersal: keeps a small buffer with T T ] data stream
the old data v

0 acceptance
Reservoir Sampling: random AN Din, probabilty

1 i \‘( reservoir
sampling L@R(t)

Class-Balanced: The buffer

capacity is class-balanced dropped points
Advantages: Efficient, suitable for Somping for efcient sieom processing STHIBSTD
Online CL

A. Chaudhry et al. “Continual Learning with Tiny Episodic Memories,” 2019. htip://arxiv.org/abs/1902.10486.
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Online Continual Learning

Online Continual Learning Notes

GDumb cannot really considered
an Online Strategy due to its latency in
Infererence, but rather as a Baseline.

for (x_new, y_new) in train_stream:

Sampling for k in train_passes:

RAR: Adversarial augumentations X_new, y_new = augment(x_new, y_new) Loss
MIR: Find interfered examples - . .
X_mem, y_mem = augment(sample(memory)) DER++: Logits Replay
ER-ACE: Bias Mitigation
compute_loss_and_backprop(x_new, y_new, x_mem, y_mem) SCR: Contrastive
weights_udpate() ER + LwkF: Distillation

Weights Update

update(memory, Xx_new, y_new)
A-GEM: uses memory only for P 2 R 2

gradient projection avaluation( Classifier

Linear Classifier
SCR (NCM at Inference Time)

https://github.com/albinsou/ocl_survey

A. Soutif—Cormerais et al. “A Comprehensive Empirical Evaluation on Online Continual Learning.” VCL@ICCV ‘23
B



Rehearsal-free CL

Hard problem: if you can, always use replay

Pretraining helps

Freezing lower layers helps

Classifier bias: in class-incremental learning, the classifier
will be biased towards new classes



CL with Pretrained Models — Deep SLDA

100
® Fixed pretrained feature = PININC | | T %
— 80.
extractor 9
. . . . 5 701
® Classifier trained via Streaming e
: iy ExStream
LDA 3 sofjgeanimais
- —»— iCaRL
® No backpropagation: fast [ i
30 . - ;
N 200 400 600 800 1000
tra inin g Number of Classes Trained

Figure 1: Learning curve for incremental ImageNet. Our
Deep SLDA approach achieves the best final top-5 accuracy,
while running over 100 times faster and using 1,000 times
less memory than the iCaRL and End-to-End models.

Hayes, Tyler L., and Christopher Kanan. “Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis.” In
CVPRW 2020. hitps://doi.org/10.1109/CVPRW50498.2020.00118.
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CL with Pretrained Models — AR1

Pretralnlng Algorithm 3 AR|
1t cew=0
. . . 2: init © random or from a pre-trained model (e.g. ImageNet)
© = 0 (O are the optimal shared weights resulting from the last training, see Section|2.3)
rcnitecuura egularization 23
Method
Train the model with SGD on the s; classes of B; by simultaneously:
H L H H : learn tw with no regularization
. F IX C | a S S Ifl e r b I a S W I t h CO py_ 10: learn © subject to SI regularization according to Fand ©

F=0(Fisthe weight importance matrix, see Section .
11: for each class j among the s; classes in B;:

: for each training batch B;:
expand output layer with s; neurons for the new classes in B;
tw = 0 (for all neurons in the output layer)
. e e 12: cw[j] = tw(j] — avg(tw)
Weight-Reinit 5 0=6
14: Update F’ according to trajectories computed on B; (see eq. and
15:  Test the model by using # and cw

PR H W

o

® Regularization with Synaptic
Intelligence

Maltoni, Davide, and Vincenzo Lomonaco. “Continuous Learning in Single-Incremental-Task Scenarios.” Neural Networks
116 (August 1, 2019): 56-73. https://doi.org/10.1016/|.neunet.2019.03.010.
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CL for Time Series — CL with RNNs

-4 Iwf oo mas —4+— replay-10
. Sequence |ength T gem -4 ewc -+4- replay-1 -4 lwf —4- replay-10
. . -4-- agem 1 m replay-1
increases forgetting o .
. o 0.8 t\,\.‘.:-\_______+ - ﬁi\\‘ 0.8 ;—7— "7""7:'?“41; T T~
® Replay is still the TSI e e
best method “od B T e —
0.2 : 0.2
® Lack of acommon 00 S e S e
¥ e A W e Tt
benchmark for CL on VS OV
. . Model (Sequence Length) Model (Sequence Length)
tl m e Se rl eS (a) Permuted MNIST (b) Split MNIST

Figure 6: Average ACC on all steps for different sequence lengths and different CL strategics.
Sequence length causes a decrease in performances among all strategies. Best viewed in color.

A. Cossu et al. “Continual Learning for Recurrent Neural Networks: An Empirical Evaluation.” Neural
Networks. http://arxiv.org/abs/2103.07492.
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CL for Time Series — CL with ESNs

® Alternative to pretraining SMNIST LSTMf ESN SSC LSTM! ESN

EWC 0.2140.02  0.2040.00 EWC 0.1040.00  0.09+0.02

LWF 0.313;0.07 0.47i0.07 LWF 0.12i()‘01 O~12i0.02

for RNNs REPLAY 0.85i003 0.7410.03 REPLAY 0.744007 0.3610.07

. SLDA — 0.88;40.01 SLDA — 0.5710.03

. M eth O d S th at tra I n O n |y NAIVE 0.20:}:0.00 0.20:‘:0_00 NAIVE O'IO:tO.OO 0.1010.00
JOINT 0.974000 0.9740.01 JOINT 0.8940.02 0.9140.02

the classifier can be used

Table 1: Mean ACC and standard deviation over 5 runs on SMNIST and SSC

(SLD A) benchmarks. SLDA is applied only to ESN since it assumes a fixed feature
extractor. SMNIST contains 5 experiences, while SSC contains 10 experiences.
E ff . T results are taken from [3], except for replay which has been recomputed to
. ICle nt guarantee the use of the same replay policy (200 patterns in memory).
® rehersal-free
® Applicable for Online CL

A. Cossu et al. “Continual Learning with Echo State Networks,” ESANN 2021. htip://arxiv.ora/abs/2105.07674.
S
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Towards Distributed
Continual Learning



CL for Pervasive Learning

Personalized Models in a Distributed Setting

® Edge devices:
o Learn a (single) local task
o  Limited computational resources
o  Small and private datasets
® Server:
o  Learns the multi-task global goal
o  Possibly large resources
o Enables communication between devices

How do we learn personalized models? Can
we achieve forward transfer and knowledge
sharing without penalizing the local task
accuracy?

Large Pretrained Models

® Properties:
o Trained on a dedicated server/cluster
o  High computational resources
o Large and diverse datasets
® Objectives:
o Learning general knowledge
o  Provide forward transfer for downstream
tasks

How do we learn large pretrained models with
continual learning? How do we use them in
CL?



Usage of Pretrained Models in CL

PROBLEMS:
@® How dowe learn a global model good for all the local
tasks

@® Dowesharea single multi-task model or do we finetune
a model for each task, starting from the global model?

Distributed CL Solutions:
@® Continual Pretraining: a large continually pretrained
model is shared and finetuned separately on each

downstream task Init from
@ rederated CL: centralized approach, a single multi-task pretrained
model is shared among all the clients model

® Ex-Model/Distributed CL: Edge devices learn local task
and send their parameters to the server. The serve
consolidates the models in a single multi-task model




Continual Pretraining

Continual Pre-Training Stream

® Continual Pretraining: the large
pretrained model is periodically
updated via CL

® Continual Finetuning: whenever a

new pretrained model becomes

Forgetting Control Task Downstream Task

(Sentiment Analysis) ________________ i (Document Classification)

available, finetune the

downstream model

o Can be trained from scratch i2 s
efficiently with linear probing.

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."
arXiv preprint arXiv:2205.09357 (2022).




Continual Pretraining: Results

Evaluation on the
Forgetting Control Task

Table 2: Accuracy on the entire dataset oflsent iment analzsiglwith RoBERTa model. Continual
pre-training has been performed sequentially over each experience of scientific abstracts.
Base refers to the model pre-trained on Wikipedia, while NT refers to the model with vocabulary
expansion.

| | | |
RoBERTa Accuracy I 1-epoch Accuracy I < faSt_
Base 93.40 —a adaptation
Exp. el e2 e3 e4 e5 || el e2 e3 ed €5
Pretr 9340 93.15 9335 9320 |92.90f| 9240 91.80 9230 91.85 92.20

Pretr. NT 9375 9370 93.75 93.60 | 94.10f| 91.75 91.15 92.00 9230 9245

Forgetting is limited even with naive finetuning.
Dynamic vocabulary expansion (NT) slightly
improves the performance.



Federated Continual Learning

® Combines Federated and L A e
Continual Learning *---l"""-_{-"*lﬂg} w
: 0.2 —lml; "-’;L Am *;hsnsm')
® Example: FedWelt A

RhinoVirus

S |
I'.lt
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zgig
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I
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18—
® |
©
R
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2 atalalataty |

o Client's model parameters: base s ga‘ =
+ task-specific + weighted sum i | &Jﬂ 1
of other tasks ccivlyrrsfering) ndvec Expeinc e

Selectively Transferring Indirect Experiences
Server kee PS a Il the param eters Figure 1. Concept. A continual learner at a hospital which learns
Forward transfer: Clients learn on sequence of disease prediction tasks may want to utilize relevant

task parameters from other hospitals. FCL allows such inter-client

which parameters from the other knowledge transfer via the communication of task-decomposed
tasks are useful parameters.

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ArXiv:2003.03196 [Cs, Stat], June 14, 2021.
http://arxiv.org/abs/2003.03196.
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Distributed Continual Learning

@® Distributed CL:

O local devices learn a single, starting from the global model as its initialization
O  Server learn a global multi-task model combining the local models sequentially
@® Adaptation: learn a new local task (on local device)
@® Consolidation: combine heterogeneous models from different devices (on server)

Sequential Independent
............. > Mess
Model Message SCDi SCD i+1 X SCD i SCD i+1

=>> Adaptation H
> Consolidation E
() Models @ @ H N @ @

: \ V.

— G| @) | )| )

. - g—I{ ] [ cr J fCL [ cr J
Consolidated / é Consolidated ‘ /
CL model CL model
Ex-Model: Continual Learning From a Stream of Trained Models. A. Carta et al; CLVISION@CVPRW, 2022

“Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” A. Carta et al. arXiv, March 28, 2023.
https://doi.org/10.48550/arXiv.2303.15888.
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Data-Agnostic Consolidation

® Double Knowledge Distillation
o Teachers: Previous CL model and
New model
O On the output
o On the latent activations (Projected)
o0 Using o.0.d. data "

Task-incremental method Dusset - Sampte
separate adaptation and
consolidation is better than
sequential finetuning (i.e. what
most CL methods are doing)

Ex-Model: Continual Learning From a Stream of Trained Models. A. Carta et al; CLVISION@CVPRW, 2022
“Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.” A. Carta et al. arXiv, March 28, 2023.



Avalanche

CL library built on top of Pytorch

Currently the most extensive collection of CL
benchmarks and algorithms

@® Used by the CL community for research, new
benchmarks, challenges and courses

Website: avalanche.continualai.org/
CL-baselines:
https://github.com/continualAl/continual-learning-
baselines/

Avalanche-demo:
https://github.com/AntonioCarta/avalanche-demo

powered by ‘ w

model = SimpleMLP(num_classes=

perm_mnist = PermutedMNIST(n_experiences=3)
train_stream = perm_mnist.t
test_stream = perm_mnist.test_stres

optimizer = SGD(model.paramete , momentum=
criterion = CrossEntropyLoss()

cl_strategy = Naive(
model, optimizer, criterion, train_mb_size=
eval_mb_size=32, device=device)

results = []

for train_exp in train_stream:
cl_strategy.train(train_exp)
results.append(cl_strategy.eval(test_stream))

, train_epochs=2,

32


https://avalanche.continualai.org/
https://github.com/continualAI/continual-learning-baselines/
https://github.com/continualAI/continual-learning-baselines/
https://github.com/AntonioCarta/avalanche-demo

Conclusion

Continual Learning provides efficient solutions to learn in constrained
environments

@ Efficient solutions: Replay with CBRS
® Online CL.: fix classifier bias + use of pretrained models +

freezing/regularization
® A key enabler of distributed learning:
o Continual pretraining and finetuning

o Federated CL
o Ex-Model/Distributed CL



