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Outline

● Deep randomized NNs
● Reservoir Computing 

architectures
● Training reservoirs
● Neuromorphic computing 

& training beyond 
backpropagation



Deep Randomized 
Neural Networks



Deep Randomized Architectures
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ℎ 𝐱 = 𝑓!(𝐱)

𝑦 = 𝑔 ∘ 𝑓!(𝐱)



The Philosophy

“Randomization is computationally 
cheaper than optimization”

Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,
20, pp. 1177-1184.



Deep image prior

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018.
Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 9446-9454).

a randomly initialized CNN
contains enough structural
information to act as an
efficient prior in many
image processing problems



Deep Randomized Neural Networks

Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural
Networks. In Recent Trends in Learning From Data (pp. 43-68).
Springer, Cham.

https://arxiv.org/pdf/2002.12287.pdf

AAAI-21 tutorial website:

https://sites.google.com/site/cgallicch/resources/tutorial_DRNN

https://arxiv.org/pdf/2002.12287.pdf
https://sites.google.com/site/cgallicch/resources/tutorial_DRNN


A deeper dive into 
Reservoir Computing



Echo State Network
Jaeger, Herbert, and Harald Haas. Science
304.5667 (2004): 78-80.



Liquid State Machine

Maass, Wolfgang, Thomas Natschläger, and Henry
Markram. Neural computation 14.11 (2002): 2531-
2560.



Fractal Prediction Machine
Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.



Vanilla Recurrent neural nets

𝐡 𝑡 = tanh(𝐖𝐡𝐡 𝑡 − 1 +𝐖𝐱𝐱 𝑡 + 𝐛)

trainable



Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.
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Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)
fixed weights

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.
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Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)
fixed weights

How to scale the weight matrices?
Fulfill the ”echo state” property
• global asymptotic Lyapunov stability condition
• spectral radius 𝜌 < 1

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.

scaling hyper-parameters

input layer

reservoir

readout 



Why does it work?

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural 
bias of contracting RNNs
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Why does it work?

Markovian bias of RNNs
separate input sequences based
on the suffix even prior to learning

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural 
bias of contracting RNNs

𝑠!

𝑠"

𝑠#

𝑠$
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+1

?
Tino, Peter, Michal Cernansky, and Lubica
Benuskova. "Markovian architectural bias of 
recurrent neural networks." IEEE Transactions 
on Neural Networks 15.1 (2004): 6-15.

latent reservoir space



Good reservoirs

Can we find a better reservoir than just a random one?

● High entropy of neurons activations 
○ diversify the temporal response of the reservoir neurons

● Long short-term memory capacity
○ latch input information effectively

● Close to the edge of chaos: reservoir at the border of stability
○ Recurrent systems close to instability show optimal performances 

whenever the task at hand requires long short-term memory



Cycle reservoirs

𝐖𝐱 𝐖𝐲
𝐖𝐡

reservoir

input readout

𝐖𝐡

• The architecture is further simplified: 𝑂 1 rather than 𝑂 𝑁!

• Matrix multiplications simplify to shift operations

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.



Cycle reservoirs

𝐖𝐱 𝐖𝐲
𝐖𝐡

reservoir

input readout

𝐖𝐡

The reservoir layer has an easy-to-build orthogonal structure

𝑱 𝒕 = 𝐃(𝑡) 𝐏
nice eigenstructure

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.



Deep reservoirs

Reservoir = set of nested non-linear dynamical systems
𝐡 $ 𝑡 = tanh(𝐖%

$ 𝐡 $ 𝑡 − 1 +𝐖&
$ 𝐡 $'( 𝑡 + 𝐛 $ )

…
𝐡 ( 𝑡 = tanh(𝐖%

( 𝐡 ( 𝑡 − 1 +𝐖&
( 𝐱 𝑡 + 𝐛 ( )

Gallicchio, Claudio, Alessio Micheli, and
Luca Pedrelli. "Deep reservoir computing: A
critical experimental analysis."
Neurocomputing 268 (2017): 87-99

driving input

• Multiple time-scales
• Multiple frequencies
• Richer dynamics 

even without training 
of the recurrent 
connections



Euler reservoirs for long-range propagation

non-dissipative stable dynamics by design

ℎ! = tanh	()" 	* +)#ℎ + ,) 1. impose antisymmetric recurrent weight 
matrix to enforce critical dynamics

2. discretize the ODE

Gallicchio, Claudio. "Euler state
networks." arXiv preprint
arXiv:2203.09382 (2022).

𝐡 𝑡 = 𝐡 𝑡 − 1 + 𝜀 tanh(𝐖𝐱 𝐱 𝑡 + 𝐖0 −𝐖0
1 − 𝛾𝐈 𝐡 𝑡 − 1 + 𝐛)

untrained

step size diffusion

dynamics are arbitrarily close to the edge of chaos



Time-series classification
High accuracy vs state-of-the-art fully trainable models & ESNs

Gallicchio, Claudio. "Euler state networks: Non-dissipative Reservoir
Computing." arXiv preprint arXiv:2203.09382 (2022).

Speed of training
𝑢𝑝 𝑡𝑜 490 x 𝑓𝑎𝑠𝑡𝑒𝑟

Energy consumption
𝑢𝑝 𝑡𝑜 1750 x 𝑐ℎ𝑒𝑎𝑝𝑒𝑟



Antisymmetric Deep Graph Networks
for long-range propagation on graphs

• Long range information between nodes
• No gradient vanishing/exploding
• Sensible performance improvement in 

applications

Gravina, Alessio, Davide Bacciu, and Claudio Gallicchio.
"Anti-Symmetric DGN: a stable architecture for Deep
Graph Networks." ICLR 2023



Integer Echo State Networks

Kleyko, Denis, et al. "Integer echo state networks: efficient reservoir computing for digital
hardware." IEEE Transactions on Neural Networks and Learning Systems 33.4 (2020): 1688-1701.

𝑥 𝑛 = 𝑓%(𝑆ℎ 𝑥 𝑛 − 1 , 1 + 𝑢&' 𝑛 + 𝑦&' 𝑛 − 1 )



Physical Reservoir Computing

Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R.,
Kanazawa, N., Takeda, S., Numata, H., Nakano, D. and
Hirose, A., 2019. Recent advances in physical reservoir
computing: A review. Neural Networks, 115, pp.100-123.



Training Reservoirs



Intrinsic Plasticity

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J.
and Stroobandt, D., 2008. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-1171.

● Adapt gain and bias of the act. function
● Tune the probability density of reservoir 

neurons to maximum entropy

gain bias

hyperparameters

Kullback–Leibler divergence minimization



Plasticity improves input separation

G.B. Morales, C. Mirasso, M.C. Soriano, 2021. Unveiling the role of plasticity
rules in reservoir computing. Neurocomputing.



Full-FORCE

𝐱(𝑡)𝐝(𝑡)

3𝐡(𝑡)

Target-generating
reservoir

𝐱(𝑡)

𝐲(𝑡)

𝐡(𝑡)

Task-performing
network

!𝐖! #𝐡 𝑡 − 1 + !𝐖"𝐲 𝑡
−𝐖!𝐡(𝑡 − 1)

RLS

B. DePasquale et al. “full-FORCE: A target-based
method for training recurrent networks,” PloS
ONE, vol. 13, no. 2, p. e0191527, 2018.

H. Tamura, G. Tanaka. “partial-FORCE: a fast
and robust online training method for
recurrent neural networks”. IJCNN 2021



Federated Reservoir 
Computing



Readout training: online

• Least Mean Squares (LMS) is not practically used due to
high eigenvalue spread of 𝐇𝐇!

• Recursive Least Squares (RLS) algorithm

Farhang-Boroujeny, Behrouz. Adaptive filters: theory and 
applications. John Wiley & Sons, 2013.

Schwedersky et al."Adaptive practical nonlinear model predictive control for echo state 
network models." IEEE Transactions on Neural Networks and Learning Systems 33.6 
(2021): 2605-2614.



Readout training: offline

● Closed form solution

○ Moore-Penrose pseudo-inversion
𝐖!"# = 𝐃 𝐇$ = 𝐃 𝐇% 𝐇𝐇% &'

○ Ridge-regression
𝐖!"# = 𝐃 𝐇% 𝐇𝐇% + 𝝀 𝐈 &'

■ 𝜆 is a Tikhonov regularization coefficient

𝐇 =
| |

𝐡(1) … 𝐡(T)
| |

𝐃 =
| |

𝐝(1) … 𝐝(T)
| |

states targets



Readout training: offline

● Incremental learning
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Incremental Federated Learning - IncFed

Bacciu, Davide, et al. "Federated reservoir computing neural networks." 2021 
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.
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• Training data is not 
transferred from the clients 
to the server

• The learned solution  is 
mathematically equivalent 
to centralized learning



Federated Intrinsic Plasticity - FedIP

Variant of the IP learning rule for federated scenarios

V. De Caro, C. Gallicchio, D. Bacciu. “Federated adaptation 
of reservoirs via intrinsic plasticity” ESANN 2022
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Fedray

Torch-ESN



Further Advances



Sevilla, Jaime, et al. "Compute Trends Across Three Eras of Machine Learning." arXiv e-prints (2022): arXiv-2202.

Doubling Time
DL algorithms
≈ 3𝑚𝑜𝑛𝑡ℎ𝑠

Moore’s law
≈ 2 𝑦𝑒𝑎𝑟𝑠



Energy consumption matters!



Running DL architectures

code run



NNs in neuromorphic HW

1. circuit for the forward path
2. memory to store neurons’ activations
3. circuit for the backward path
4. circuit for adjusting the free parameters
5. time

synchronicity of the layers operations in the 
forward & backward passes



Forward-forward

Hinton, Geoffrey. "The forward-forward algorithm: Some
preliminary investigations." arXiv preprint
arXiv:2212.13345(2022).

positive
target: 4 target: 3

negative

Signal Propagation

Kohan, Adam, Edward A. Rietman, and Hava T. Siegelmann.
"Forward Signal Propagation Learning." arXiv preprint
arXiv:2204.01723 (2022).



Neuromorphic chip: Photonics

De Marinis, Lorenzo, et al. "Photonic neural
networks: a survey." IEEE Access 7 (2019):
175827-175841.

• the flow of information is light
• synapses implemented by multiple 

interferometers or transmission of 
optical waveguides



Neuromorphic chip: CMOS with Memristors

• neurons implemented in CMOS
• the flowing information is electrical 

current
• synapses implemented as memristors

• nanoscale resistors
• non-volatile analog conductance states

• synaptic layers can be mapped onto 
crossbar array blocks

𝑉!

𝑉"

𝑉#

𝑉7

input

output

𝐼8 =>
+

𝐺+8𝑉+



Neuromorphic chip: Spintronics

● magnetic nano-neurons implemented as spin torque oscillators
● synapses implemented as radiowaves

Torrejon, Jacob, et al. "Neuromorphic computing with nanoscale 
spintronic oscillators." Nature 547.7664 (2017): 428-431.

Locatelli, Nicolas, Vincent Cros, and Julie Grollier. "Spin-torque 
building blocks." Nature materials 13.1 (2014): 11-20.



Mechanical systems

● Neural Networks implemented by physical bodies or soft robots

Hauser, Helmut, et al. "Towards a theoretical foundation for
morphological computation with compliant bodies." Biological
cybernetics 105.5 (2011): 355-370.

Nakajima, Kohei, et al. "Information processing via
physical soft body." Scientific reports 5.1 (2015): 1-11.



Conclusions



Conclusions

● Leverage principled architectural biases of dynamical systems 
for fast computation in sequential data

● Hardware-Software co-design
○ weight quantization, architecture & topology
○ cyclic, deep, Euler reservoirs

● Simplified training algorithms & learning beyond backprop
○ Local adaptation, Federated learning
○ Intrinsic Plasticity, FORCE, Forward-forward, SigProp, …


