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The Philosophy

“Randomization is computationally
cheaper than optimization”

Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,
20, pp. N77-1184.



Deep image prior
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Fig. 2: Image restoration using the deep image prior. Starting from a random weights #,, we iteratively
update them in order to minimize the data term eq. (2). At every iteration the weights 8 are mapped to an image
x = fo(z), where z is a fixed tensor and the mapping [ is a neural network with parameters 8. The image = is
used to compute the task-dependent loss F(x, 2q). The gradient of the loss w.r.t. the weights # is then computed
and used to update the parameters,

a randomly initialized CNN
contains enough structural
information to act as an
efficient prior in many
image processing problems

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018.
Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 9446-9454).




Deep Randomized Neural Networks

| : Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural
N Networks. In Recent Trends in Learning From Data (pp. 43-68).
Recent Trends Springer, Cham.

in Learning
https://arxiv.ora/pdf/2002.12287 .odf

‘From Data

L Tutorials from the INNS BigData

and Deep Learning Conference
‘ (INNSBDDL2019)

&) Springer

AAAI-21 tutorial website:

https://sites.google.com/site/cgallicch/resources/tutorial DRNN

35th AAAI Conference on Artificial Intelligence
A Virtual Conference //i\

February 2-9, 2021



https://arxiv.org/pdf/2002.12287.pdf
https://sites.google.com/site/cgallicch/resources/tutorial_DRNN

A deeper dive into
Reservoir Computing



Jaeger, Herbert, and Harald Haas. Science
304.5667 (2004): 78-80.

Echo State Network

REPORTS

Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy

in Wireless Communication
Herbert Jaeger* and Harald Haas

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved by
a factor of 2400 over previous techniques. The potential for engineering ap-
plications is illustrated by equalizing a communication channel, where the signal
error rate is improved by two orders of magnitude.



Maass, Wolfgang, Thomas Natschlager, and Henry
Markram. Neural computation 14.11 (2002): 2531-
2560.

Liquid State Machine

ARTICLE Communicated by Rodney Douglas

Real-Time Computing Without Stable States: A New
Framework for Neural Computation Based on Perturbations

Wolfgang Maass

maass@igi.tu-graz.ac.at

Thomas Natschliger

tnatschl@igi.tu-graz.ac.at

Institute for Theoretical Computer Science, Technische Universitit Graz;
A-8010 Graz, Austria

Henry Markram

henry.markram@epfl.ch

Brain Mind Institute, Ecole Polytechnique Federale de Lausanne,
CH-1015 Lausanne, Switzerland



Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.

Fractal Prediction Machine

Predicting the Future of Discrete Sequences
from Fractal Representations of the Past

PETER TINO petert@ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Computer Science and Engineering, Slovak University of Technology, llkovicova 3, 812 19 Bratislava, Slovakia

GEORG DORFFNER georg @ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6/2, A-1010 Vienna, Austria

Editor: Michael Jordan

Abstract. We propose a novel approach for building finite memory predictive models similar in spirit to variable
memory length Markov models (VLMMs). The models are constructed by first transforming the n-block structure
of the training sequence into a geometric structure of points in a unit hypercube, such that the longer is the common
suffix shared by any two n-blocks, the closer lie their point representations. Such a transformation embodies a
Markov assumption—n-blocks with long common suffixes are likely to produce similar continuations. Prediction
contexts are found by detecting clusters in the geometric n-block representation of the training sequence via vector
quantization. We compare our model with both the classical (fixed order) and variable memory length Markov
models on five data sets with different memory and stochastic components. Fixed order Markov models (MMs)
fail on three large data sets on which the advantage of allowing variable memory length can be exploited. On
these data sets, our predictive models have a superior, or comparable performance to that of VLMMSs, yet, their
construction is fully automatic, which, is shown to be problematic in the case of VLMMs. On one data set, VLMMs
are outperformed by the classical MMs. On this set, our models perform significantly better than MMs. On the
remaining data set, classical MMs outperform the variable context length strategies.



Vanilla Recurrent neural nets

h(t) = tanh(

W, h(t —1) +

W

x(t) +
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Echo State Networks

h(t) = tanh(pWyh(t — 1) + w, W,x(t) + w,b)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property." Neural
networks 35 (2012): 1-9.



Echo State Networks

fixed weights

h(t) = tanh(pW,h(t — 1) + w, W, x(t) + w;b)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property."” Neural
networks 35 (2012): 1-9.



Echo State Networks

fixed weights
h(t) = tanh(pW,h(t — 1) + 0, W, x(t) + w;b)
scaling hyper-parameters

How to scale the weight matrices?

Fulfill the "echo state” property

« global asymptotic Lyapunov stability condition
« spectral radius p < 1

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property."” Neural
networks 35 (2012): 1-9.




Why does it work?

Because of the architectural

bi

as of contracting RNNs
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Gallicchio,
Micheli, Neural
(2011): 440-456.

Claudio, and Alessio
Networks 24.5

latent reservoir space
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Why does it work?

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural

bias of contracting RNNs

L
s
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*
.
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Markovian bias of RNNs
separate input sequences based
on the suffix even prior to learning

Tino, Peter, Michal Cernansky, and Lubica
Benuskova. "Markovian architectural bias of
recurrent neural networks."™ IEEE Transactions
on Neural Networks 15.1 (2004): 6-15.

latent reservoir space

v




Good reservoirs
Can we find a better reservoir than just a random one?

® High entropy of neurons activations
o diversify the temporal response of the reservoir neurons
® Long short-term memory capacity
o latch input information effectively
® Close to the edge of chaos: reservoir at the border of stability

o Recurrent systems close to instability show optimal performances
whenever the task at hand requires long short-term memory



Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),

Cycle reservoirs /5750

reservoir
input readout
- w, |9 w, =
O > O
O O

« The architecture is further simplified: 0(1) rather than 0(N?)
« Matrix multiplications simplify to shift operations




Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),

Cycle reservoirs /5750

reservoir
input readout
- w, |9 w, =
O > O
O O

The reservoir layer has an easy-to-build orthogonal structure

J(t) =D(t) P

nice eigenstructure
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Gallicchio, Claudio, Alessio Micheli, and
Luca Pedrelli. "Deep reservoir computing: A
critical experimental analysis."
Neurocomputing 268 (2017): 87-99

Deep reservoirs

Reservoir = set of nested non-linear dynamical systems
h@(t) = tanh(W"h@ (¢ — 1) + WhED (1) + bD)

driving input

h® (t) = tanh(W VRO (£ — 1) + WVx(¢) + bD)

* Multiple time-scales

* Multiple frequencies

* Richer dynamics
even without training
of the recurrent
connections
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Euler reservoirs for long-range propagation

Gallicchio, Claudio. "Euler state
networks." arXiv preprint
arXiv:2203.09382 (2022).

non-dissipative stable dynamics by design

hr — tanh(Wx x + Whh + b) 1. impose antisymmetric recurrent weight

matrix to enforce critical dynamics
2. discretize the ODE

step size

h(t) = h(t — 1) + & tanh(Wy x(t) +ﬂvh — W,

__

diffusion

2D

untrained

dynamics are arbitrarily close to the edge of chaos




Gallicchio, Claudio. "Euler state networks: Non-dissipative Reservoir
Computing." arXiv preprint arXiv:2203.09382 (2022).

Time-series classification
High accuracy vs state-of-the-art fully trainable models & ESNs
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Figure 5: Averaged test set accuracy on the time-series classification benchmarks. The “fully trained” results refer to the trainable model (among RNN, A-RNN and
GRU) that achieves the highest accuracy on each task. Further details can be found in[Appendix A




Antisymmetric Deep Graph Networks
for long-range propagation on graphs

t=0 t=c(t-1) t=e =T  fime ® Long range information between nodes
initial condition (input) final embedding . . . .
s ® No gradient vanishing/exploding
oDE —— ® Sensible performance improvement in
xu(0) %u(T) . .
applications
e Diameter SSSp Eccentricity
GCN 0.742440.0466  0.9499+9.18-10~°  0.8468+0.0028
DGR GAT 0.822140.0752 0.6951+0.1499 0.7909+0.0222
GraphSAGE  0.8645+0.0401 0.2863+0.1843 0.7863+0.0207
GIN 0.6131+0.0990 -0.5408+0.4193 0.9504+0.0007
N
¥ Our -0.5188+0.1812 -3.2417+0.0751 0.4296+0.1003
A-DGN lw W il @" X Our(GCN) 0.2646+0402 -1.3659+0.0702 0.7177+0.0345

XN, —>@—>@_>@_f
0

b
Gravina, Alessio, Davide Bacciu, and Claudio Gallicchio.
"Anti-Symmetric DGN: a stable architecture for Deep

s xi—l + eo ((W - W7T _ ’)’I)Xﬁ_l + ‘I’(Xe_l,./\/'u) + b) Graph Networks." ICLR 2023
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Integer Echo State Networks
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"Integer echo state networks: efficient reservoir computing for digital

hardware." IEEE Transactions on Neural Networks and Learning Systems 33.4 (2020): 1688-1701.




Physical Reservoir Computing

Reservoir

W SR S S S S S S O O O O O O o, F

Physical

systems / devices

I N

Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R.,
Kanazawa, N., Takeda, S., Numata, H., Nakano, D. and
Hirose, A., 2019. Recent advances in physical reservoir
computing: A review. Neural Networks, 115, pp.100-123.
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Training Reservoirs



Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J.
and Stroobandt, D., 2008. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-1171.

Intrinsic Plasticity

Memory - tanh Memory - fermi Memory - tanh

mﬂ ” m ® Adapt gain and bias of the act. function

WM ® Tune the probability density of reservoir
. : ’ neurons to maximum entropy
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Fig. 4. Resuls for all three benchmarks for tanh with spectral radius ranging (left column), exponential IP for fermi nodes (middle column), and Gaussian
IP for tanh nodes (right column).
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Full-FORCE
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reservoir
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B. DePasquale et al. “full-FORCE: A target-based Task-performing
method for training recurrent networks,” PloS network

ONE, vol. 13, no. 2, p. e0191527, 2018.
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Federated Reservoir
Computing



Readout training: online

Least Mean Squares (LMS) is not practically used due to
high eigenvalue spread of HH”
Recursive Least Squares (RLS) algorithm

1. Computation of the gain vector: e , id(k)
: ; 1u(k) y(k)
—w-! Yret (R) | Quadratic Au(k) .u( ol
uz) = ¥, (n — Dx(n) _:_) Programming ¥ > Process >
1 .
k(n) = m“(n) E TG(k) Tyfree(k)
2. Filtering: E Linearization kz:]?j?:g:e z71 ({I—
Faor () = W' (n = Dx(n) A ¥ :
3. Error estimation: [ )RR R R Rk Lo
; ; S AV VI
é,_1(n) =d(n) —3,_,(n) Vil Model )€
4. Tap-weight vector adaptation: v e 5 .
. . X i RLS = :
W(n) = Wn —1) +kmeé,_,(n) D | Estimator | —
i Online ESN +

5. W; ' (n) update: AL

¥ () = Tri (A7 (¥ (n = 1) — k(m)u" (n))}
Schwedersky et al."Adaptive practical nonlinear model predictive control for echo state
Farhang-Boroujeny, Behrouz. Adaptive filters: theory and network models." IEEE Transactions on Neural Networks and Learning Systems 33.6
applications. John Wiley & Sons, 2013. (2021): 2605-2614.




Readout training: offline

® Closed form solution

H =

| |
h(l) .. h(T)] D=
| |

states targets

o Moore-Penrose pseudo-inversion
W,,,=DH"= DH'(HH")1
o Ridge-regression
W,,, =DHI(HH" + 2D

m /is a Tikhonov regularization coefficient

| |
(1) .. d(T)‘
| |




Readout training: offline

® Incremental learning
Woue =D HT(HHT +AD7 1

\ HH = ) B;
ZDHT ZA z z

ieC ieEC

IEC ieC

Woue = (), A) (z B+ l)

-1




Incremental Federated Learning - IncFed

S 4,8,

i v 5 USRS
Bi*” = B; + B, YQWMQOY V..,

@ O PP DT TEELLLE —--

“““ -— e e

e c—f
“/

A3V = A3 + A3
B3®" = B; + B3

P

Training data is not
transferred from the clients
to the server

The learned solution is
mathematically equivalent
to centralized learning

L B
@‘6@ Sap, W= (Z ) (Z B, +u>

Bacciu, Davide, et al. "Federated reservoir computing neural networks." 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.




Federated Intrinsic Plasticity - FedIP

Variant of the IP learning rule for federated scenarios

%TR WESAD HHAR

w/o FedIP | w/ FedIP | w/o FedIP | w/ FedIP
25% | 72.09+059 | 78.68 +0.12 | 57.08 £3.11 | 69.83 +0.64
50% | 72.04+103 | 7743019 | 63.88+6.02 | 57.74 +0.19
75% | 76.53 108 | 77.97 041 | 71.09 056 | 71.08 +0.69
100% | 77.78 z058 | 79.42+039 | 70.29 +099 | 71.38 +0.43

V. De Caro, C. Gallicchio, D. Bacciu. “Federated adaptation

of reservoirs via intrinsic plasticity” ESANN 2022




-
Torch-ESN

build(self, dataset batch_size: int) ->

self.wrapper = \ (dataset, self.id, batch_size)

train(self, : float 1 : float, eta: , epochs:
ile :
= self.receive().body|
reservoir = self.wrapper.ip_step(

reservoir=reservoir, mu=mu, sigma=sigma, eta=eta, epochs=epochs

)
state_dict = reservoir.state_dict()
n_samples = self.wrapper.get_dataset_size()
self.send(
header="1ip
body:
: state_dict["net_:
state_dict!("ne
: n_samples,

train(self, reservoir:
ip_aggregator = FedAvgAggregator()

while True:

self.send("rese e M l'": reservoir})

ip_aggregator.setup(self.neighbors)

while ip_aggregator.ready:
ip_aggregator(self.receivel())

ip_params = ip_aggregator.compute()

reservoir.load_state_dict(ip_params, strict=s

self.update_version(reservoir=reservoir)

federation = ESNF
dataset=dataset,
batch_size=batch_size,
n_clients_or_id
roles=["train"
)
reservoir = Re (*kreservoir_params)
federation.ip_train(reservoir, mu, sigma, eta, epochs)
for r in e(rounds):
model = federation.pull_version()["
federation.stop()



Further Advances



Training compute (FLOPs) of milestone Machine Learning systems over time

Doubling Time

1e+22

1e+20

DL algorithms
~ 3 months

1e+18

Pre Deep Learning Era

1e+16

1e+14

1e+12 ==

98 Moore’s law
’ ~ 2 years

Training compute (FLOPs)
O
(o]

1e+6 o—————"

1e+4 ©]

Deep Learning Era

1e+2 5

1952 1960 1968 1976 1984 1992 2000 2008 2016
Publication date

Sevilla, Jaime, et al. "Compute Trends Across Three Eras of Machine Learning." arXiv e-prints (2022): arXiv-2202.



Energy consumption matters!

Artificial intelligence / Machine learning

Training a single Al model
can emit as much carbon

ImageNet Training in 24 Minutes

Yang You, Zhao Zhang, James Demmel, Kurt Keutzer, Cho-Jui Hsieh
(Submitted on 14 Sep 2017)

as five cars in their
lifetimes

Deep learning has a terrible carbon footprint.

by KarenHao June 6,2019

The artificial-intelligence industry is often compared to the oil industry: once
mined and refined. data, like oil, can be a highly lucrative commodity.
Now it seems the metaphor may extend even further. Like its fossil-fuel
counterpart, the process of deep learning has an outsize environmental
impact.

Finishing 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU takes 14 days.
This training requires 10*18 single precision operations in total. On the other hand, the world's
current fastest supercomputer can finish 2 * 10*17 single precision operations per second
{Dongarra et al 2017). If we can make full use of the supercomputer for DNN training. we should
be able to finish the 90-epoch ResNet-50 training in five seconds. However, the current bottleneck
for fast DNN training is in the algorithm level. Specifically, the current batch size (e.g. 512) is too
small to make efficient use of many processors

For large-scale DNN training, we focus on using large-batch data-parallelism synchronous SGD
without losing accuracy in the fixed epochs. The LARS algorithm (You, Gitman, Ginsburg, 2017)
enables us to scale the batch size to extremely large case (e.g. 32K). We finish the 100-epoch
lmageNet trammg with AIexNet in 24 minutes, which is the world record Same as Facebook‘

However, our hardware budget is only 1.2 million USD. which is 3.4 times lower than Facebook's
'w

4.1 million USD.




itectures

Running DL arch
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NNs in neuromorphic HW

circuit for the forward path

1.

activations

circuit for the backward path

2. memory to store neurons’

3.

circuit for adjusting the free parameters

time

4,

5.

synchronicity of the layers operations in the

forward & backward passes




Signal Propagation

Forward-forward
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Neuromorphic chip: Photonics

Optical Input Optical Output
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* synapses implemented by multiple
; vt (S A interferometers or transmission of

E% /@'\/_U_\ U0 £ optical waveguides
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Neuromorphic chip: CMOS with Memristors

neurons implemented in CMOS
the flowing information is electrical
current

synapses implemented as memristors
* nanoscale resistors
* non-volatile analog conductance states

synaptic layers can be mapped onto
crossbar array blocks
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Neuromorphic chip: Spintronics

@® magnetic nano-neurons implemented as spin torque oscillators
® synapses implemented as radiowaves

UN

(//A “‘\'v”’i i\\‘/

@ ‘
SI7A '/ X

Ia N ’/A\‘\Rr G\ \“Q"v’”OA‘\’//

: ‘. \\\',ll “'/

; . il Input signal
Spin precession ‘<__4 _’ i(?) _L

DC bias Io-l—

Free layer
Insulator

Pinned layer '

Output V'

,\
0 ‘
\‘ / * ,\A“‘
% RS r RS
\\ //"A‘ \‘. ‘Z)IV‘\\\\,.., 24 )"\

X """ W% A:\::\'/ *““" "'\\\
SAV/Q \\V""“‘“\V// XN/

Torrejon, Jacob, et al. "Neuromorphic computing with nanoscale
spintronic oscillators." Nature 547.7664 (2017): 428-431.

Locatelli, Nicolas, Vincent Cros, and Julie Grollier. "Spin-torque
building blocks." Nature materials 13.1 (2014): 11-20.




Mechanical systems

® Neural Networks implemented by physical bodies or soft robots
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Conclusions



Conclusions

® Leverage principled architectural biases of dynamical systems
for fast computation in sequential data

® Hardware-Software co-design
o weight quantization, architecture & topology
o cyclic, deep, Euler reservoirs
® Simplified training algorithms & learning beyond backprop

o Local adaptation, Federated learning
o Intrinsic Plasticity, FORCE, Forward-forward, SigProp, ...



