
Pervasive AI
ECML-PKDD 2023 Tutorial

Davide Bacciu, Antonio Carta, Patrizio Dazzi, Claudio Gallicchio
University of Pisa, Italy

Solutions and Infrastructures for
distributed and federated

learning

Davide Bacciu, Antonio Carta, Patrizio Dazzi, Claudio Gallicchio
University of Pisa, Italy

http://pai.di.unipi.it/aaai-2023-tutorial-on-pervasive-ai/

http://pai.di.unipi.it/aaai-2023-tutorial-on-pervasive-ai/

Outline

● Need for going beyond
single machine learning

● Distributed learning
● Federated learning
● Beyond federated

learning
● How to approach the

development of such stuff
● Conclusions

Need for going
beyond single

machine for learning

The World is not enough

ü Learning using single machines could be limiting
ü Computational limitations

ü a single machine may not have enough computational power to train large models
in a reasonable amount of time

ü Memory limitations
ü large models require more memory than a

single machine can provide

ü Scalability challenges
ü a single machine may not be able to handle

the increase in data size and complexity when
training large models

One Machine

Computational Limitations

Insufficient computational power can lead
to: longer training times, decreased
accuracy

A single machine does not have enough
computational power to train large
models in a reasonable amount of time

Memory Limitations

The greatest challenges when training large
models using a single machine

Scalability Challenges

Scalability refers to the ability of a system to
perform well under an increased or expanding
workload.

A system that scales well will be able to maintain or
increase its level of performance even as it is
tested by larger and larger operational demands.

a single machine may not be able to handle
the increase in data size and complexity
when training large models

Any way to improve single machine capabilities?

To some extent…

Multicores GPUs FPGAs

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

Parallel Computing Distributed Computing
Many operations are performed
simultaneously System components are located at different locations

Single computer is required Uses multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other
through bus

Computer communicate with each other through
message passing.

Improves the system performance Improves system scalability, fault tolerance and
resource sharing capabilities

…but the main issue with “not-distributed” parallel machines is on…

SCALABILITY when problem complexity increases and data grows

This sounds familiar, right?

What to do when a machine is not enough ?

“When the going gets
tough, the tough get

going.”
one machine is not enough!

Distributed
Learning

What is distributed
learning ?

Learning performed using a Distributed System!

What is a distributed system?

Various definitions have been given

none of them completely satisfactory

none of them in agreement with any of the others

“A distributed system is a collection of autonomous
computing elements that appears to its users as a
single coherent system.”

[Distributed Systems 3, Tanenbaum & Van Steen]

This definition refers to two key features

A distributed system is a collection of computing elements,
each being able to behave independently of the other

End users (humans or software) believe they are dealing
with a single system

This means that one way or another the autonomous nodes need
to collaborate.

How collaboration happens in distributed systems?

nodes need to achieve common goals realized by
exchanging messages with each other

nodes react to messages leading to
further communication through
message passing

End users should not even notice that
processes, data, and control are dispersed
across a computer network

nodes can act independently from each other

Single coherent system

Coherent if it behaves according to the expectations of its users in
a single coherent system

The collection of nodes as a whole operates the same, no matter
where, when, and how interaction takes place

This so-called distribution transparency is an important design
goal of distributed systems.

But let’s avoid to
go too far

... let’s just focus on how distributed systems support learning!

How distributed
learning is performed?

It’s a matter of data and computation distribution and synchronisation!

Namely, how do machines collaborate to speed-up the computation?

Two flavours of Distributed Training: Data Parallelism vs Model Parallelism

Data Parallelism vs. Model Parallelism

data is scattered throughout a set
of machines that perform the
training loops in all of them either
synchronously or asynchronously

When a model is so big that
it doesn't fit in the memory of a
single device (heard about LLMs ?),
it is possible to divide it into
different parts, distribute them
across multiple machines and train
each one of them independently
using the same data

Data Parallelism

Parameter Server

Model
Replicas

Data
Shards

Model Parallelism

Machine 1 Machine 2

Machine 3 Machine 4

Communication and Synchronization Models

Fundamental to understand how the nodes synchronise with each other

Relevant as different workers may work at different speeds and hence the partial
gradients may not be available from all the workers at the same time

Waiting for all workers to finish, then it may not be
very efficient.

Using stale gradients then convergence
may be slower

Three models of communication arise as a result of the tradeoff between speed and convergence.

During the gradient update phase

Bulk Synchronous Parallel - BSP

BSP is, at the most basic level, a two-step process performed iteratively and
synchronously:

1) perform task computation on local data
2) communicate the results, and then repeat the two steps.

Thus the BSP model is composed of the workers, the communication between them and a
barrier

The barrier marks the end of a super step or an iteration

Bulk Synchronous Parallel - BSP

In the Distributed ML case each worker works on its own gradient and the barrier ensures
that the parameter server updates the weights only when it receives the gradient from all
the workers

The BSP model trades off speed for convergence.

synchronization of the parallel tasks occur at the super step barriers, depicted below

Asynchronous Parallel - ASP

With ASP, all workers send their gradients to the server, but no synchronisation is
implemented

Workers do not wait for other workers to complete; hence, the parameter server may have
stale gradients from a few workers.

This causes errors in the gradient calculation and hence delays the convergence. Also,
each worker may obtain a different version of the weight from the parameter server.

Consequently, ASP has the least training time but yields a lower accuracy and is not stable
in terms of model convergence

Stale Synchronous Parallel - SSP

SSP combines ASP and BSP and uses a policy to switch between ASP and BSP during training dynamically

The idea is that the difference in the iteration number for the fastest and the slowest worker should not
exceed a user-defined number

There is no waiting time, but the fastest workers may have to wait for the slowest worker to catch up

The model convergence guarantee is high but decreases as the staleness increases

Existing Frameworks

What is still an issue

Distributed learning is a way to address the limitation of a single machine

However, Distributed learning, in practice, still needs data to be collected on a
cluster or cloud

When users generating data are in order of millions (or even greater) this implies:
scalability concerns
privacy concerns

Do we have an answer for these issues?

Let’s play with Federated Learning!

Federated
Learning

Intro e Motivation

Federated learning trains a model across multiple decentralised
networked devices holding local data samples without exchanging them

Federated learning enables multiple actors to build a robust machine
learning model without sharing data, thus addressing critical issues such
as:

data privacy
data security
data access rights
access to heterogeneous data

Federated vs. Distributed (data parallel) Learning

On the assumptions at the basic goals:
distributed (data parallel) learning originally aims at parallelising computations
federated learning aims at training on heterogeneous datasets

Distributed (data parallel) learning
aims at training a single model on
multiple servers

• a common assumption is that the
local datasets are independent
and identically distributed

• roughly have the same size

With Federated learning the
datasets are typically heterogeneous
and their sizes vary

Actors involved in federated learning
may be unreliable as they are
subject to more failures or drop

Aggregation architectures

centralised hierarchical fully decentralised

First-class entities

Actor-centric design and development model

Topology definition

Synchronisation policies

Existing Frameworks

OpenFL Flower

Industry-oriented
Scarce prototyping tools

Only client-server approaches
Lack of flexibility for new methods

Mostly for federated analytics

Bound to TF logic
Challenging to implement new algorithms

An R&D-Oriented Framework for easy, end-to-end experimentation in Federated Learning

Rapid prototyping and evaluation of FL algorithms via:
Well-known off-the-shelf algorithms
API for implementing new algorithms

Based on Ray seamless multiprocessing on any Ray Cluster

Completely Pythonic API easy implementation and execution

Works with any federation scheme: Client-Server, Hierarchical, Decentralized

Both synchronous and asynchronous

FedRay as a way to perform experimentations in Federated Learning

Network Manager
SERVERMPI

…

MPI

MPI

Client 1

Client n

Topology

send

receive

send

receive

send

receive

@ray.remote

@ray.remote

@ray.remote

@ray.remote

• Network Manager:
• Takes care of the

network topology (can be
dynamic)

• Keeps references of all
the active nodes

• Forwards messages to
participants (only the hex
code of the objects in the
Ray Object Store)

• Node:
• Implements the local

logic of the federated
process

• Can be either internal or
external

• Communicates with
others via send and
receive

Node handles

ActorHandle: server

ActorHandle: client1

ActorHandle: client2

ActorHandle: clientN

…

Defines the base
topology of the
federation

build(…): initializes network
and gets nodes handles

forward(msg): redirects
messages to ids (if neigh)

Key use cases

Autnomous driving cars: high number of agents, need to quickly
respond to real world situations. Federated learning as a solution
for limiting volume of data transfer and accelerating learning

Industry 4.0: privacy of sensitive data for manufacturing
companies is of key importance. Federated learning algorithms
can be applied to these problems as they do not disclose any
sensitive data

e-health: the ability to train machine learning models at scale
across multiple medical institutions without moving the data is a
critical technology

Beyond federated
learning

Bringing Decentralised Federated Learning to the next level

Decentralised Federated Learning performances depend on the
topology of the network

[H. Kavalionak et al. "Impact of Network Topology on the Convergence of Decentralized Federated Learning Systems,"
2021 IEEE Symposium on Computers and Communications, Athens, Greece, 2021]

Adopting “vanilla” approaches for
decentralised data exchange (e.g., all-to-all)
could lead to inefficient communications

Percolating weights across the network

Different approaches have been considered so far to percolate
weights across the network in a fully decentralized ways.

Different approaches and different complexities.

Ranging from simple message distribution to overlay networks

Just percolating data across the links…

Some decentralized approaches
just send messages across links
that computes the average…

Just percolating data across the links…

a

c

d

b

e

a

c

d

b
b

c

d

a

c

d

b

X

X = 1/3 b + 1/3 c + 1/3 d

… and computing the average

Gossip Learning

Gossip Learning is a method for learning models from fully distributed data
without central control

[István Hegedűs et al. Decentralized learning works: An empirical comparison of gossip learning and federated learning, Journal of
Parallel and Distributed Computing, Vol. 148, 2021]

Each node in the network initialises a local model wk (and its age tk)

The model is then periodically sent to another node
in the network without any synchronisation

A so-called sampling service supports the node
selection

Gossip Learning

Upon receiving a model wr, the node merges it with the local model and
updates it using the local data set Dk

Merging is achieved by averaging the model parameters

In the simplest case, the received model merely overwrites the local
model

This mechanism results in the models taking random walks in the
network and being updated when visiting a node

Gossip Learning

Nice, interesting… but how I
am supposed to develop

distributed learning
applications ?

Writing Applications targeting Distributed and Federated Learning Environments

Different ways to distribute
workload

Different mechanisms
available

Different assumptions can
be made

Programming for Distributed and Federated Learning Environments is complex

Need for programming models in distributed and federated
learning environments

Complexity of orchestrating multiple devices and nodes

the right programming model can streamline development and management

Programming Models for Distributed and Federated Learning Environments

various programming models can be used to target distributed and federated learning environments

MapReduce

Dataflow Programming

Reactive Programming

Actor Model

MapReduce

Parallel programming model and processing paradigm used for distributed data processing

Computations as set of iterations involving Map + Reduce operations, mostly not pure functions

Hadoop: the first framework that was available to
perform MapReduce computations. Quite low-level
approach to the interactions across nodes.
[JVM]

Apache Spark: a framework that improves Hadoop in
several ways. A functional-based approach strongly
focused on Immutable distributed data structures (RDD)
[JVM]

Dataflow Programming

Dataflow Programming as a model for specifying and executing computations as a directed graph of
data dependencies

Dataflow Programming is particularly suitable for managing data processing pipelines in distributed
systems

Apache Beam: An open-source, unified model for
defining both batch and streaming data-parallel
processing pipelines.

Google Cloud Dataflow: A fully managed stream and
batch data processing service based on Apache
Beam, designed for easy deployment and scaling.

Reactive Programming

A programming paradigm for event-driven programming paradigm

Focuses on reacting to changes and events in real-time

Reactive Programming can help manage data streams and event-driven systems in distributed
learning environments

RxJava/RxJS: Reactive Extensions for Java and
JavaScript, providing a set of libraries for
composing asynchronous and event-based
programs. [JVM+JS]

Reaqtor is a framework for creating reliable, stateful,
distributed, and scalable event processing based on
Reactive Extensions (Rx). [.NET]

The Actor Model

A programming paradigm for concurrent and distributed systems

Actors are independent entities with their own state and behavior

Actor Model simplifies handling asynchronous communication in distributed systems

Akka/Pekko: A popular toolkit and runtime for building
highly concurrent, distributed, and fault-tolerant systems.
[JVM]

Microsoft Orleans: An actor framework designed to
simplify distributed application development in .NET,
focusing on scalability and reliability.
[.NET]

Conclusions

Conclusion

When data and models became too big, their training on a single machine is unfeasible

Using more machines is possible, adopting different strategies for distributed learning

When privacy is a concern, federated learning is a possibility

Federated Learning is a vivid research area, with also some nice proposals for going
beyond it

Programming (efficiently) with ease distributed learning solutions can be challenging,
some approaches exist

