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O utl | ne ® Continual Learning

® CL for Edge Devices
® Distributed CL




Introduction to
Continual Learning



Continual Learning

CL = Incremental Learning from a non-stationary stream
+ environment information: task labels, task boundaries, ...
+ constraints: computational/memory limits, privacy, ...
+ metrics: minimize forgetting, maximize transfer, ...

Suggested review:

T. Lesort et al. “Continual Learning for
Robotics: Definition, Framework, Learning
Strategies, Opportunities and Challenges.”
Information Fusion.
https://doi.org/10.1016/}.inffus.2019.12.004.
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Environment Information — Nomenclature

Different streams require different methods

Stream: A list of experiences, each providing a batch of data and
some additional information (e.g. task labels)

Batch/Online: How much data do we have in each experience?
Class/Domain-incremental: Do we know the type of shifts?

Do we know when the shifts happen?

Do we have task labels at training/inference time?
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Three Common Scenarios

Domain-incremental: each experience provides
new instances for old classes. Old instances are
never seen again (in the training stream).
Class-Incremental: each experience provides
new classes. Old classes are never revisited (in
the training stream).

Task-Incremental: each experience provides
task labels

task-aware/task-agnostic to highlight presence
of task labels

Ven, Gido M. van de, and Andreas S. Tolias. “Three Scenarios for Continual Learning.”
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Arxiv Preprint, April 15, 2019. https://doi.org/10.48550/arXiv.1904.07734.



https://doi.org/10.48550/arXiv.1904.07734

“Catastrophic
Forgetting”

Deep neural networks completely and abruptly forget previously
learned information upon learning new information.




Catastrophic Forgetting
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Kirkpatrick, J. et al. “Overcoming Catastrophic Forgetting in Neural Networks.” PNAS, 2017, 201611835.



Replay
® Keep a buffer of old
samples

@® Rehearse old samples

--- data stream
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dropped points

Reservoir Sampling

Methodologies

Regularization

@® Regularize the model
to balance learning
and forgetting

o Low error for task B == EWC

Low error for task A = L2
== No penalty

Elastic Weight Consolidation

Image from https://towardsdatascience.com/reservoir-sampling-for-efficient-stream-processing-97f47f85c11b

Architectural

@® Expand the model
over time with new
units/layers
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CL for Edge Devices



CL for Edge Devices

Applications

® Model personalization
® Wearable sensors

® Streams of video

Edge devices bring their own constraints

® Privacy: often we cannot save the user’s data

® Efficiency: energy, memory, and computational power are limited
resources

® Latency: often require online training and predictions



Continuous Object Recognition: CORe50

@® Continuous Object Recognition
O 50 classes
O  Short videos of object manipulation with different background
O Temporal coherence from videos

@® Many scenarios: batch, online, with repetitions.
@® Advantages: online, realistic streams

Lomonaco V. and Maltoni D. CORe50: a New Dataset and Benchmark for Continuous Object Recognition. CoRL2017.




CL with Repetitions

® Real world problems have
repetitions of concepts and | = baman nemara
imbalanced concepts

® Synthetic generator to simulate
streams with repetitions and control
the difficulty of the benchmark e w E

Number of Experiencéns (N)
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H. Hemati et al. “Class-Incremental Learning with Repetition.” arXiv, January 26, 2023. https://doi.org/10.48550/arXiv.2301.11396.
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CL with Repetitions — Results

® Repetitions help, even with naive .
finetuning 1 4
® Models change less and less over 42‘?
time R
® Correcting the imbalance in the " S gt
stream helps e
£ Pt
Eilig;;n: Accuracy of Infrequent

H. Hemati et al. “Class-Incremental Learning with Repetition.” arXiv, January 26, 2023. https://doi.org/10.48550/arXiv.2301.11396.
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CL Methods for Edge Devices

® Rehersal-free CL methods avoid storing past data to ensure
privacy

® Online CL methods learn from small mini-batches (often with
replay)

® CL methods can exploit randomized networks and pretrained
models



Efficiency — Replay with Class-Balanced Reservoir Sampling

Rehersal: keeps a small buffer with T T deta sream
the old data ' |
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Reservoir Sampling: random /AN Pin_ probabilty

Sampling r\% Ee?s?rz;ir

Class-Balanced: The buffer
capacity is class-balanced dropped points
Image from https.//towardsdatascience.com/reservoir-

Ad Va nta g es: Effi C i e nt, S U ita b | e fO r sampling-for-efficient-stream-processing-97f47f85c11b
Online CL

A. Chaudhry et al. “Continual Learning with Tiny Episodic Memories,” 2019. hitp://arxiv.org/abs/1902.10486.
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Rehearsal-free CL

Hard problem: if you can, always use replay

Pretraining helps

Freezing lower layers helps

Classifier bias: in class-incremental learning, the classifier
will be biased towards new classes



CL with Pretrained Models — Deep SLDA
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Figure 1: Learning curve for incremental ImageNet. QOur
Deep SLDA approach achieves the best final top-5 accuracy,
while running over 100 times faster and using 1,000 times
less memory than the iCaRL and End-to-End models.

Hayes, Tyler L., and Christopher Kanan. “Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis.” In
CVPRW 2020. https://doi.org/10.1109/CVPRW50498.2020.00118.



https://doi.org/10.1109/CVPRW50498.2020.00118

CL with Pretrained Models — AR1

Pretraining Algorithm 3 ARI

I: cw=20

2: init © random or from a pre-trained model (e.g. ImageNet)

© = 0 (O are the optimal shared weights resulting from the last training, see Section[2.3)
F=0(Fisthe weight importance matrix, see Section .

. for each training batch B;:

expand output layer with s; neurons for the new classes in B;

tw = 0 (for all neurons in the output layer)

Architectural+Regularization
Method

. . . . Trai: a;l;e $0\Si] vlvlghr :izr?;a:?:n& classes of B; by simultaneously:
. F IX C | a S S Ifl e r b I a S Wlt h C O py_ 10; L:am i:) subj:ct to Sgl rlegularization according to Fand®

11: for each class j among the s; classes in B;:

. o« e 12: cwlj] = tw[j] — avg(tw)
Weight-Reinit 5 e=6 T
14: Update F' according to trajectories computed on B; (see eq. and@
15: Test the model by using € and cw

PR R W

bl

® Regularization with Synaptic
Intelligence

Maltoni, Davide, and Vincenzo Lomonaco. “Continuous Learning in Single-Incremental-Task Scenarios.” Neural Networks
116 (August 1, 2019): 56—73. https://doi.org/10.1016/|.neunet.2019.03.010.
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CL for Time Series — CL with RNNs
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Figure 6: Average ACC on all steps for different sequence lengths and different CL strategies.
Sequence length causes a decrease in performances among all strategies. Best viewed in color.

A. Cossu et al. “Continual Learning for Recurrent Neural Networks: An Empirical Evaluation.”
ArXiv:2103.07492 [Cs], May 28, 2021. http://arxiv.org/abs/2103.07492.
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CL for Time Series — CL with ESNs

® Alternative to pretraining SMNIST  LSTM! ESN SSC LSTM' ESN

EWC 0.2140.02 0.2040.00 EWC 0.1010.00 0.0940.02

LWF 0.3110.07 0.47 10.07 LWF 0.1250.01 0.1210.02

for RNNs REPLAY  0.85:00s 0.741003 REPLAY 0741007  0.361007

. SLDA 0.88;]:0‘01 SLDA O.57i0_03

. MethOdS that tra In on |y NAIVE 0.2040.00 0.2040.00 NAIVE 0.1040.00  0.10+0.00
JOINT 0.97+0.00 0.97 10.01 JOINT 0.8940.02 0.9140.02

the classifier can be used

Table 1: Mean ACC and standard deviation over 5 runs on SMNIST and SSC

(SLD A) benchmarks. SLDA is applied only to ESN since it assumes a fixed feature
extractor. SMNIST contains 5 experiences, while SSC contains 10 experiences.
Eff- . T results are taken from [3], except for replay which has been recomputed to
. ICIe nt guarantee the use of the same replay policy (200 patterns in memory).
® rehersal-free
® Applicable for Online CL

A. Cossu et al. “Continual Learning with Echo State Networks,” ESANN 2021. hitp://arxiv.org/abs/2105.07674.
S
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Towards Distributed
Continual Learning



CL for Pervasive Learning

Personalized Models

® Properties:
o Trained on edge devices
o  Limited computational resources
o  Small and private datasets
® Objectives:
o  Personalization
o  Low-latency
o  Privacy

How do we learn personalized models? Can
we improve their performance via transfer
between different models?

Large Pretrained Models
® Properties:
o Trained on a dedicated server/cluster
o High computational resources
o Large and diverse datasets
® Objectives:
o  Learning general knowledge
o  Provide forward transfer for downstream
tasks

How do we learn large pretrained models with
continual learning? How do we use them in
CL?



Pretraining in CL

Pretrained Models in the CL literature: used as a base
initialization.

PROBLEM: pretraining helps only before training. 24
Once we start learning, we cannot use pretrained
models anymore. Ji ,JL_

Proposed solutions:

@® Frederated CL: centralized approach, no
difference between large pretrained model and
personalized models Init from

@® cContinual Pretraining: CL of the pretrained model pretrained
+ Continual finetuning on downstream tasks model

@® E£x-Model CL: Devices send and receive “expert
model” messages
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Continual Pretraining

Continual Pre-Training Stream

® Continual Pretraining: the large
pretrained model is periodically
updated via CL

® Continual Finetuning: whenever a
new pretrained model becomes
available, finetune the

downstream model
o Can be trained from scratch 5 D
efficiently with linear probing.

Forgetting Control Task Downstream Task
(Sentiment Analysis) i (Document Classification)

Cossu, A., et al. "Continual Pre-Training Mitigates Forgetting in Language and Vision."
arXiv preprint arXiv:2205.09357 (2022).




Continual Pretraining: Results

Evaluation on the
Forgetting Control Task

Table 2: Accuracy on the entire dataset ofjsentiment analysisgjwith ROBERTa model. Continual
pre-training has been performed sequentially over each experience of scientific abstracts.
Base refers to the model pre-trained on Wikipedia, while NT refers to the model with vocabulary

expansion. [ .
RoBERTa Accuracy I 1-epoch Accuracy I <+— fast
Base 93.40 adaptation
Exp. el e2 e3 e4 e5 || el e2 e3 e4 es
Pretr 9340 93.15 93.35 9320 J92.90)| 9240 91.80 9230 91.85 92.20
Pretr. NT 9375 9370 93,75 93.60 §94.10 | 91.75 91.15 9200 9230 9245

Forgetting is limited even with naive finetuning.
Dynamic vocabulary expansion (NT) slightly
improves the performance.



Federated Continual Learning

® Combines Federated and
Continual Learning

® Example: FedWelt

o Client’s model parameters: base
+ task-specific + weighted sum
of other tasks

o Server keeps all the parameters
Forward transfer: Clients learn
which parameters from the other
tasks are useful

Hospital A Hospital B Hospttal C
Public Health System ﬁh
(Central Server) . SARS-CoV (03) -42
ki i Mo -] 2}
] - = Adeno

: i) SARS
e e 8 I c D i
17|, e "——_I' _____ +m \
2 S L i coviD-19 (19) 3
1 covID-19 - [ C uman
: - » 4- ga an Vi
= | inoVirus
I I o8
‘ I
I
1

I M o
;"‘-"l:::: ''''''''''''''' + +I%% [covr0) |

Selectively Transferring | Indirect Experiences

Figure 1. Concept. A continual learner at a hospital which learns
on sequence of disease prediction tasks may want to utilize relevant
task parameters from other hospitals. FCL allows such inter-client
knowledge transfer via the communication of task-decomposed
parameters.

J. Yoon et al. “Federated Continual Learning with Weighted Inter-Client Transfer.” ArXiv:2003.03196 [Cs, Stat], June 14, 2021.
http://arxiv.org/abs/2003.03196.
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Ex-Model Continual Learning

® Continual Learning: one batch of data at each experience
® Ex-Model CL: one pretrained model at each experience
® Consolidation: learn to combine two different models

pEeM | pEeM L ExM
i g f : £
A . A .
- A -~
el ey ‘e ﬁ
S S 5
h h fi
> >
Continual Learning Ex-Model Continual Learning
Figure 1. Ex-model Continual Learning. The stream is composed of expert models, without access to the original data.

Ex-Model: Continual Learning From a Stream of Trained Models. A. Carta et al; CLVISION@CVPRW, 2022




Ex-Model Continual Learning: Double Distillation

® Double Distillation: learn
. New Synthetic Curren
to consolidate the new Data (1) Generate TR
model (2) Update

expert with the previous CL
\EL Model (t)
Buffer /(:)'Double KD ﬁ

® Data-free: use out-of- AN $ /!
distribution data or n
Previous

synthetic samples Previous CL Model (t-1)
urrer

Ex-Model: Continual Learning From a Stream of Trained Models. A. Carta et al; CLVISION@CVPRW, 2022




Avalanche

CL library built on top of Pytorch

Currently the most extensive collection of CL
benchmarks and algorithms

Used by the CL community for research, new
benchmarks, challenges and courses
Tutorial on Avalanche tomorrow @ 9:00AM
at the Continual-Causality Bridge!

Website: avalanche.continualai.org/
CL-baselines:
https://github.com/continualAl/continual-learning-
baselines/

Avalanche-demo:
https://qgithub.com/AntonioCarta/avalanche-demo

powered by

(o0

Continual A/
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https://github.com/continualAI/continual-learning-baselines/
https://github.com/AntonioCarta/avalanche-demo

Conclusion

Continual Learning provides efficient solutions to learn in
constrained environments

@ Efficient solutions: Replay with CBRS
® Online CL. fix classifier bias + use of pretrained models +

freezing/regularization
® promising avenues for future research:
o Interaction between CL and pretraining

o Federated CL
o Ex-Model CL
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