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Outline

● Deep randomized NNs
● Reservoir Computing 

architectures
● Training reservoirs
● Neuromorphic computing 

& training beyond 
backpropagation



Deep Randomized 
Neural Networks



The Philosophy

“Randomization is computationally 
cheaper than optimization”

Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,
20, pp. 1177-1184.



Deep Randomized Architectures

input layer

representation 
function

readout layer

fixed

trainable

ℎ 𝐱 = 𝑓!(𝐱)

𝑦 = 𝑔 ∘ 𝑓!(𝐱)



Deep image prior

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018.
Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 9446-9454).

a randomly initialized CNN
contains enough structural
information to act as an
efficient prior in many
image processing problems



Reservoir Transformers

Shen, S., Baevski, A., Morcos, A.S., Keutzer, K., Auli,
M. and Kiela, D., 2020. Reservoir Transformer. arXiv
preprint arXiv:2012.15045.



Performers

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A.,
Kaiser, L. and Belanger, D., 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.



Deep Randomized Neural Networks

Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural
Networks. In Recent Trends in Learning From Data (pp. 43-68).
Springer, Cham.

https://arxiv.org/pdf/2002.12287.pdf

AAAI-21 tutorial website:

https://sites.google.com/site/cgallicch/resources/tutorial_DRNN

https://arxiv.org/pdf/2002.12287.pdf
https://sites.google.com/site/cgallicch/resources/tutorial_DRNN


A deeper dive into 
Reservoir Computing



Echo State Network
Jaeger, Herbert, and Harald Haas. Science
304.5667 (2004): 78-80.



Liquid State Machine

Maass, Wolfgang, Thomas Natschläger, and Henry
Markram. Neural computation 14.11 (2002): 2531-
2560.



Fractal Prediction Machine
Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.



Vanilla Recurrent neural nets

𝐡 𝑡 = tanh(𝐖𝐡𝐡 𝑡 − 1 +𝐖𝐱𝐱 𝑡 + 𝐛)

trainable



Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.

input layer

reservoir

readout 



Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)
fixed weights

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.

input layer

reservoir

readout 



Echo State Networks

𝐡 𝑡 = tanh(𝜌𝐖𝐡𝐡 𝑡 − 1 + 𝜔#𝐖𝐱𝐱 𝑡 + 𝜔$𝐛)
fixed weights

How to scale the weight matrices?
Fulfill the ”echo state” property
• global asymptotic Lyapunov stability condition
• spectral radius 𝜌 < 1

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel. 
"Re-visiting the echo state property." Neural 
networks 35 (2012): 1-9.

scaling hyper-parameters

input layer

reservoir

readout 



Why does it work?

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural 
bias of contracting RNNs
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Why does it work?

Markovian bias of RNNs
separate input sequences based
on the suffix even prior to learning

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural 
bias of contracting RNNs

𝑠!

𝑠"

𝑠#

𝑠$

-1

+1

-1

+1

?
Tino, Peter, Michal Cernansky, and Lubica
Benuskova. "Markovian architectural bias of 
recurrent neural networks." IEEE Transactions 
on Neural Networks 15.1 (2004): 6-15.

latent reservoir space



Leaky Integrator – Echo State Network

Use leaky integrators reservoir neurons:

Jaeger, Herbert, et al. "Optimization and
applications of echo state networks with leaky-
integrator neurons." Neural networks20.3 (2007):
335-352.

𝐡 𝑡 = 1 − 𝛼 𝐡 𝑡 − 1 + 𝛼 tanh(𝐖𝒙𝐱 𝑡 +𝐖𝐡𝐡 𝑡 − 1 + 𝐛)

leaking rate hyper-parameter 
𝛼 ∈ (0,1]
• smaller values for reservoirs that 

react more slowly to the input

Tanaka, Gouhei, et al. "Reservoir computing with diverse
timescales for prediction of multiscale
dynamics." Physical Review Research 4.3 (2022): L032014.



Input-output and output-feedback connections

𝐖𝒙

𝐖𝒐𝒖𝒕

𝐖𝒉

𝐕𝒙

𝒚 𝒕 = 𝑾𝒙𝒉 𝒕 + 𝑽𝒙𝒙(𝒕)

𝒉 𝒕 = 𝝈(𝑾𝒙𝒙 𝒕 +𝑾𝒉𝒉 𝒕 − 𝟏 +𝑾𝒚𝒚 𝒕 − 𝟏 )

𝐖𝒙

𝐖𝒐𝒖𝒕

𝐖𝒉

𝐖𝒚

𝒉 𝒕 = 𝝈(𝑾𝒙𝒙 𝒕 + (𝑾𝒉+𝑾𝒚𝑾𝒐𝒖𝒕)𝒉 𝒕 − 𝟏 )
trained

FORCE: 𝑊+,- connections  trained by RLS

Sussillo D, Abbott LF. Generating coherent
patterns of activity from chaotic neural
networks. Neuron. 2009; 63(4): 544–557



Multiple readouts

● The reservoir is operating in
a purely unsupervised mode

● If multiple tasks involve the
same input time-series (but
different targets) the same
reservoir could be used𝐖𝒙

𝐖𝒐𝒖𝒕
𝟏

𝐖𝒉

𝐖𝒐𝒖𝒕
𝟐

𝐖𝒐𝒖𝒕
𝟑



Good reservoirs

Can we find a better reservoir than just a random one?

● High entropy of neurons activations 
○ diversify the temporal response of the reservoir neurons

● Long short-term memory capacity
○ latch input information effectively

● Close to the edge of chaos: reservoir at the border of stability
○ Recurrent systems close to instability show optimal performances 

whenever the task at hand requires long short-term memory



Cycle reservoirs

𝐖𝐱 𝐖𝐲
𝐖𝐡

reservoir

input readout

𝐖𝐡

• The architecture is further simplified: 𝑂 1 rather than 𝑂 𝑁!

• Matrix multiplications simplify to shift operations

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.



Cycle reservoirs

𝐖𝐱 𝐖𝐲
𝐖𝐡

reservoir

input readout

𝐖𝐡

The reservoir layer has an easy-to-build orthogonal structure

𝑱 𝒕 = 𝐃(𝑡) 𝐏
nice eigenstructure

Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),
pp.131-144.



Deep reservoirs

Reservoir = set of nested non-linear dynamical systems
𝐡 $ 𝑡 = tanh(𝐖%

$ 𝐡 $ 𝑡 − 1 +𝐖&
$ 𝐡 $'( 𝑡 + 𝐛 $ )

…
𝐡 ( 𝑡 = tanh(𝐖%

( 𝐡 ( 𝑡 − 1 +𝐖&
( 𝐱 𝑡 + 𝐛 ( )

Gallicchio, Claudio, Alessio Micheli, and
Luca Pedrelli. "Deep reservoir computing: A
critical experimental analysis."
Neurocomputing 268 (2017): 87-99

driving input



Architectural bias of depth in Recurrent Neural Nets

• Multiple time-scales
• Multiple frequencies
• Develop richer dynamics even without training of the recurrent connections

Gallicchio, Claudio, Alessio Micheli, and
Luca Pedrelli. "Deep reservoir computing: A
critical experimental analysis."
Neurocomputing 268 (2017): 87-99

Gallicchio, C., Micheli, A. and Pedrelli, L.,
2018. Design of deep echo state networks.
Neural Networks, 108, pp.33-47.



Architectural bias of depth in Recurrent Neural Nets

• Multiple time-scales
• Multiple frequencies
• Develop richer dynamics even without training of the recurrent connections

Gallicchio, Claudio, and Alessio Micheli. "Deep reservoir
computing." Reservoir Computing (2021): 77-95.

edge of chaos

𝜆123 = max
4

1
𝑇

7
-5!,…,8

ln | 𝜆4 𝑱 𝑡 |

state dynamics are closer to the edge of chaos
𝜆!"# ≈ 0

local Lyapunov exponents



Euler reservoirs

non-dissipative stable dynamics by design

ℎ! = tanh	()" 	* +)#ℎ + ,) 1. impose antisymmetric recurrent weight 
matrix to enforce critical dynamics

2. discretize the ODE

Gallicchio, Claudio. "Euler state
networks." arXiv preprint
arXiv:2203.09382 (2022).

𝐡 𝑡 = 𝐡 𝑡 − 1 + 𝜀 tanh(𝐖𝐱 𝐱 𝑡 + 𝐖1 −𝐖1
2 − 𝛾𝐈 𝐡 𝑡 − 1 + 𝐛)

untrained

step size diffusion

dynamics are arbitrarily close to the edge of chaos



Euler reservoirs

Gallicchio, Claudio. "Euler state
networks." arXiv preprint
arXiv:2203.09382 (2022).

The input signal is preserved without 
exploding nor dying

bridge the accuracy gap with fully trainable models

up to x100 times more efficient
than fully trainable RNNs



Antisymmetric Deep Graph Networks

• Long range information between nodes
• No gradient vanishing/exploding
• Sensible performance improvement in 

applications

Gravina, Alessio, Davide Bacciu, and Claudio Gallicchio.
"Anti-Symmetric DGN: a stable architecture for Deep
Graph Networks." ICLR 2023



Hardware-optimized RC

Morán, Alejandro, et al. "Hardware-optimized reservoir computing
system for edge intelligence applications." Cognitive
Computation (2021): 1-9.

𝑓 𝑥 = max(−1,min( 𝑥, 1 )



Integer Echo State Networks

Kleyko, Denis, et al. "Integer echo state networks: efficient reservoir computing for digital
hardware." IEEE Transactions on Neural Networks and Learning Systems 33.4 (2020): 1688-1701.

𝑥 𝑛 = 𝑓4(𝑆ℎ 𝑥 𝑛 − 1 , 1 + 𝑢9: 𝑛 + 𝑦9: 𝑛 − 1 )



Physical Reservoir Computing

Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R.,
Kanazawa, N., Takeda, S., Numata, H., Nakano, D. and
Hirose, A., 2019. Recent advances in physical reservoir
computing: A review. Neural Networks, 115, pp.100-123.



Training Reservoirs



Intrinsic Plasticity

Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J.
and Stroobandt, D., 2008. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-1171.

● Adapt gain and bias of the act. function
● Tune the probability density of reservoir 

neurons to maximum entropy

gain bias

hyperparameters

Kullback–Leibler divergence minimization



Plasticity improves input separation

G.B. Morales, C. Mirasso, M.C. Soriano, 2021. Unveiling the role of plasticity
rules in reservoir computing. Neurocomputing.



Full-FORCE

𝐱(𝑡)𝐝(𝑡)

G𝐡(𝑡)

Target-generating
reservoir

𝐱(𝑡)

𝐲(𝑡)

𝐡(𝑡)

Task-performing
network

!𝐖! #𝐡 𝑡 − 1 + !𝐖"𝐲 𝑡
−𝐖!𝐡(𝑡 − 1)

RLS

B. DePasquale et al. “full-FORCE: A target-based
method for training recurrent networks,” PloS
ONE, vol. 13, no. 2, p. e0191527, 2018.

H. Tamura, G. Tanaka. “partial-FORCE: a fast
and robust online training method for
recurrent neural networks”. IJCNN 2021



Phase Transition Adaptation

Train echo state networks to the edge of chaos

𝐡 𝑡 = tanh(𝒂⨀(𝐖𝐡𝐡 𝑡 − 1 +𝐖𝐱𝐱 𝑡 ) + 𝐛)

• local learning of gain and bias
• cycle reservoirs: the eigenstructure

is easily adapted

C. Gallicchio, A. Micheli, L. Silvestri. “Phase
Transition Adaptation”. IJCNN 2021



Homeostatic regulation

autonomous adaptation of the spectral radius during external input 
stimulation

F. Schubert, C. Gros. “Local
homeostatic regulation of
the spectral radius of
echo-state networks”.
Frontiers in Computational
Neuroscience, 2021



Federated Reservoir 
Computing



Readout training: online

• Least Mean Squares (LMS) is not practically used due to
high eigenvalue spread of 𝐇𝐇!

• Recursive Least Squares (RLS) algorithm

Farhang-Boroujeny, Behrouz. Adaptive filters: theory and 
applications. John Wiley & Sons, 2013.

Schwedersky et al."Adaptive practical nonlinear model predictive control for echo state 
network models." IEEE Transactions on Neural Networks and Learning Systems 33.6 
(2021): 2605-2614.



Readout training: offline

● Closed form solution

○ Moore-Penrose pseudo-inversion
𝐖!"# = 𝐃 𝐇$ = 𝐃 𝐇% 𝐇𝐇% &'

○ Ridge-regression
𝐖!"# = 𝐃 𝐇% 𝐇𝐇% + 𝝀 𝐈 &'

■ 𝜆 is a Tikhonov regularization coefficient

𝐇 =
| |

𝐡(1) … 𝐡(T)
| |

𝐃 =
| |

𝐝(1) … 𝐝(T)
| |

states targets



Readout training: offline

● Incremental learning

3
$∈-

𝐷$𝐻$. =3
$∈-

𝐴$
3
$∈-

𝐻$𝐻$. =3
$∈-

𝐵$

𝐖89: = (?
;

𝑨;) ?
;

𝑩; + 𝝀 𝐈
<=

𝐖89: = 𝐃𝐇2 𝐇𝐇2 + 𝝀 𝐈 <=



Incremental Federated Learning - IncFed

Bacciu, Davide, et al. "Federated reservoir computing neural networks." 2021 
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.

𝑨!, 𝑩!

𝑨", 𝑩"

𝑨#, 𝑩#
𝐖+,- = (7

;

𝑨;) 7
;

𝑩; + 𝝀 𝐈
<!

𝑨!=>? = 𝑨𝟏 + R𝑨𝟏
𝑩!=>? = 𝑩𝟏 + R𝑩𝟏

𝑨"=>? = 𝑨𝟐 + R𝑨𝟐
𝑩"=>? = 𝑩𝟐 + R𝑩𝟐

𝑨#=>? = 𝑨𝟑 + R𝑨𝟑
𝑩#=>? = 𝑩𝟑 + R𝑩𝟑

• Training data is not 
transferred from the clients 
to the server

• The learned solution  is 
mathematically equivalent 
to centralized learning



Federated Intrinsic Plasticity - FedIP

Variant of the IP learning rule for federated scenarios

V. De Caro, C. Gallicchio, D. Bacciu. “Federated adaptation 
of reservoirs via intrinsic plasticity” ESANN 2022

𝒂𝟏, 𝒃𝟏

𝒂", 𝒃"

𝒂, 𝒃 = 7
𝒊∈B𝒕

𝑛C
𝑛
𝒂𝒊 ,7

𝒊∈B𝒕

𝑛C
𝑛
𝒃𝒊



Fedray

Torch-ESN



Further Advances



Energy efficiency

Marr, Bo, et al.
"Scaling energy per
operation via an
asynchronous
pipeline." IEEE
Transactions on Very
Large Scale
Integration (VLSI)
Systems 21.1 (2012):
147-151.



Energy consumption matters!

https://openai.com/blog/ai-and-compute/

Dario Amodei and Danny Hernandez. AI 
and compute, 2018. Blog post. 

● 2012-2017: 300000x
● 3.4-month doubling time 



Geen AI

Schwartz, Roy, et al.
"Green ai." arXiv preprint
arXiv:1907.10597 (2019).



Quantifying the carbon emissions of ML

Lacoste, Alexandre, et al.
"Quantifying the carbon
emissions of machine
learning." arXiv preprint
arXiv:1910.09700 (2019).

https://mlco2.github.io/impact/



Energy consumption matters!



vs the Brain…

≈30 PFlops
10 MW vs 20 W

memory and computing are co-located
10(( neurons, 10(/ synapses

10000 synapses/neuron



Running DL architectures

code run



NNs in neuromorphic HW

1. circuit for the forward path
2. memory to store neurons’ activations
3. circuit for the backward path
4. circuit for adjusting the free parameters
5. time

synchronicity of the layers operations in the 
forward & backward passes



Neuromorphic chip: Photonics

De Marinis, Lorenzo, et al. "Photonic neural
networks: a survey." IEEE Access 7 (2019):
175827-175841.

• neurons implemented by optical 
resonators

• the flow of information is light
• synapses implemented by multiple 

interferometers or transmission of 
optical waveguides



Neuromorphic chip: CMOS with Memristors

● neurons implemented in CMOS
● the flowing information is 

electrical current
● synapses implemented as 

memristors
○ nanoscale resistors
○ non-volatile analog conductance 

states

𝑉!

𝑉"

𝑉#

𝑉D

input

output

𝐼E =7
;

𝐺;E𝑉;



Neuromorphic chip: Spintronics

● magnetic nano-neurons
● synapses implemented as radiowaves

Torrejon, Jacob, et al. "Neuromorphic computing with nanoscale 
spintronic oscillators." Nature 547.7664 (2017): 428-431.

Locatelli, Nicolas, Vincent Cros, and Julie Grollier. "Spin-torque 
building blocks." Nature materials 13.1 (2014): 11-20.



Mechanical systems

● Neural Networks implemented by physical bodies or soft robots

Hauser, Helmut, et al. "Towards a theoretical foundation for
morphological computation with compliant bodies." Biological
cybernetics 105.5 (2011): 355-370.

Nakajima, Kohei, et al. "Information processing via
physical soft body." Scientific reports 5.1 (2015): 1-11.



Biological systems

● Neural Networks implemented on in vitro biological components

Tanaka, Gouhei, et al. "Recent advances in physical reservoir computing:
A review." Neural Networks 115 (2019): 100-123.

Obien, Marie Engelene J., et al. "Revealing neuronal function through
microelectrode array recordings." Frontiers in neuroscience 8 (2015): 423.

Hafizovic, Sadik, et al. "A CMOS-based microelectrode
array for interaction with neuronal cultures." Journal of
neuroscience methods 164.1 (2007): 93-106.



Beyond backpropagation

● Memory overhead for storing the neural activations
● Sequentiality and synchronicity of forward & backward passes
● Weight transport problem: forward-backward weight symmetry 

● Biological implausible
○ no evidence for derivatives propagation
○ no evidence for storing neural activations
○ no evidence for mirrored connections (top-down ≠ bottom-up)



Forward Forward

● Local goodness ∑" ℎ"!

● Local loss function ℒ = 𝜎( (∑0 ℎ01 − 𝜃))
● “positive” forward pass: increase the 

goodness of each layer for real data
● “negative” forward pass: reduce the 

goodness of each layer for wrong data

Hinton, Geoffrey. "The forward-forward algorithm: Some preliminary
investigations." arXiv preprint arXiv:2212.13345(2022).

positive
target: 4 target: 3

negative

+
−



SigProp

● every layer processes both input 
and learning signal
○ ℎ; - output of the layer
○ 𝑡; - target for the layer

● local loss
ℒ ℎ$ , 𝑡$ = 𝐶𝐸(𝑦$∗, 𝑂345 ℎ$ , 𝑡$ )

Kohan, Adam, Edward A. Rietman, and Hava T. Siegelmann.
"Forward Signal Propagation Learning." arXiv preprint
arXiv:2204.01723 (2022).



Equilibrium Propagation

Scellier, Benjamin, and Yoshua Bengio. "Equilibrium propagation: Bridging
the gap between energy-based models and backpropagation." Frontiers in
computational neuroscience 11 (2017): 24.

Laydevant, Jérémie, et al. "Training Dynamical Binary Neural Networks
with Equilibrium Propagation." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021.



Conclusions



Conclusions

● Leverage principled architectural biases of dynamical systems 
for fast computation in sequential data

● Hardware-Software co-design
○ activation functions, weight quantization, architecture & topology
○ cyclic, deep, Euler reservoirs

● Simplified training algorithms & learning beyond backprop
○ Local adaptation, Federated learning
○ Intrinsic Plasticity, FORCE, Forward-forward, SigProp, …


