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Deep Randomized
Neural Networks



The Philosophy

“Randomization is computationally
cheaper than optimization”

Rahimi, A. and Recht, B., 2008. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
Advances in neural information processing systems, 21, pp.1313-1320.

Rahimi, A. and Recht, B., 2007. Random features for large-scale kernel machines. Advances in neural information processing systems,
20, pp. N77-1184.
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Deep Randomized Architectures
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Deep image prior
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Fig. 2: Image restoration using the deep image prior. Starting from a random weights #,, we iteratively
update them in order to minimize the data term eq. (2). At every iteration the weights 8 are mapped to an image
x = fo(z), where z is a fixed tensor and the mapping [ is a neural network with parameters 8. The image = is
used to compute the task-dependent loss F(x,2q). The gradient of the loss w.r.t. the weights # is then computed
and used to update the parameters,

a randomly initialized CNN
contains enough structural
information to act as an
efficient prior in many
image processing problems

Ulyanov, D., Vedaldi, A. and Lempitsky, V., 2018.
Deep image prior. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (pp. 9446-9454).




Reservoir Transformers
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Figure 4: Downstream RoBERTa performance on SST-2 (left) and MultiNLI-matched (right).

Shen, S., Baevski, A., Morcos, A.S., Keutzer, K., Auli,
M. and Kiela, D., 2020. Reservoir Transformer. arXiv

preprint arXiv:2012.15045.




Performers
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Figure 1: Approximation of the regular attention mechanism AV (before D~ -renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A.,
Kaiser, L. and Belanger, D., 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.




Deep Randomized Neural Networks

| : Gallicchio, C. and Scardapane, S., 2020. Deep Randomized Neural
N Networks. In Recent Trends in Learning From Data (pp. 43-68).
Recent Trends Springer, Cham.

in Learning
https://arxiv.ora/pdf/2002.12287 .odf

‘From Data

L Tutorials from the INNS BigData

and Deep Learning Conference
‘ (INNSBDDL2019)

&) Springer

AAAI-21 tutorial website:

https://sites.google.com/site/cgallicch/resources/tutorial DRNN

35th AAAI Conference on Artificial Intelligence
A Virtual Conference //i\

February 2-9, 2021
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A deeper dive into
Reservoir Computing



Jaeger, Herbert, and Harald Haas. Science
304.5667 (2004): 78-80.

Echo State Network

REPORTS

Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy

in Wireless Communication
Herbert Jaeger* and Harald Haas

We present a method for learning nonlinear systems, echo state networks
(ESNs). ESNs employ artificial recurrent neural networks in a way that has
recently been proposed independently as a learning mechanism in biological
brains. The learning method is computationally efficient and easy to use. On
a benchmark task of predicting a chaotic time series, accuracy is improved by
a factor of 2400 over previous techniques. The potential for engineering ap-
plications is illustrated by equalizing a communication channel, where the signal
error rate is improved by two orders of magnitude.



Maass, Wolfgang, Thomas Natschlager, and Henry
Markram. Neural computation 14.11 (2002): 2531-
2560.

Liquid State Machine

ARTICLE Communicated by Rodney Douglas

Real-Time Computing Without Stable States: A New
Framework for Neural Computation Based on Perturbations

Wolfgang Maass

maass@igi.tu-graz.ac.at

Thomas Natschliger

tnatschl@igi.tu-graz.ac.at

Institute for Theoretical Computer Science, Technische Universitit Graz;
A-8010 Graz, Austria

Henry Markram

henry.markram@epfl.ch

Brain Mind Institute, Ecole Polytechnique Federale de Lausanne,
CH-1015 Lausanne, Switzerland



Tino, Peter, and Georg Dorffner. Machine
Learning 45.2 (2001): 187-217.

Fractal Prediction Machine

Predicting the Future of Discrete Sequences
from Fractal Representations of the Past

PETER TINO petert@ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Computer Science and Engineering, Slovak University of Technology, llkovicova 3, 812 19 Bratislava, Slovakia

GEORG DORFFNER georg @ai.univie.ac.at
Austrian Research Institute for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria; Department of
Medical Cybernetics and Artificial Intelligence, University of Vienna, Freyung 6/2, A-1010 Vienna, Austria

Editor: Michael Jordan

Abstract. We propose a novel approach for building finite memory predictive models similar in spirit to variable
memory length Markov models (VLMMs). The models are constructed by first transforming the n-block structure
of the training sequence into a geometric structure of points in a unit hypercube, such that the longer is the common
suffix shared by any two n-blocks, the closer lie their point representations. Such a transformation embodies a
Markov assumption—n-blocks with long common suffixes are likely to produce similar continuations. Prediction
contexts are found by detecting clusters in the geometric n-block representation of the training sequence via vector
quantization. We compare our model with both the classical (fixed order) and variable memory length Markov
models on five data sets with different memory and stochastic components. Fixed order Markov models (MMs)
fail on three large data sets on which the advantage of allowing variable memory length can be exploited. On
these data sets, our predictive models have a superior, or comparable performance to that of VLMMSs, yet, their
construction is fully automatic, which, is shown to be problematic in the case of VLMMs. On one data set, VLMMs
are outperformed by the classical MMs. On this set, our models perform significantly better than MMs. On the
remaining data set, classical MMs outperform the variable context length strategies.



Vanilla Recurrent neural nets

h(t) = tanh(

W, h(t —1) +

W

x(t) +

b




Echo State Networks

h(t) = tanh(pWyh(t — 1) + w, W,x(t) + w,b)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property." Neural
networks 35 (2012): 1-9.



Echo State Networks

fixed weights

h(t) = tanh(pW,h(t — 1) + w, W, x(t) + w;b)

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property."” Neural
networks 35 (2012): 1-9.



Echo State Networks

fixed weights
h(t) = tanh(pW,h(t — 1) + 0, W, x(t) + w;b)
scaling hyper-parameters

How to scale the weight matrices?

Fulfill the "echo state” property

« global asymptotic Lyapunov stability condition
« spectral radius p < 1

Yildiz, Izzet B., Herbert Jaeger, and Stefan J. Kiebel.
"Re-visiting the echo state property."” Neural
networks 35 (2012): 1-9.




Why does it work?

Because of the architectural

bi

as of contracting RNNs

*
.
taamuus?®

Gallicchio,
Micheli, Neural
(2011): 440-456.

Claudio, and Alessio
Networks 24.5

latent reservoir space
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Why does it work?

Gallicchio, Claudio, and Alessio
Micheli, Neural Networks 24.5
(2011): 440-456.

Because of the architectural

bias of contracting RNNs

L
s
a®

*
.
taamuus?®

Markovian bias of RNNs
separate input sequences based
on the suffix even prior to learning

Tino, Peter, Michal Cernansky, and Lubica
Benuskova. "Markovian architectural bias of
recurrent neural networks."™ IEEE Transactions
on Neural Networks 15.1 (2004): 6-15.

latent reservoir space

v




Leaky Integrator — Echo State Network

Use leaky integrators reservoir neurons:

h(t) = (1 —a)h(t — 1) + a tanh(W,x(t) + Wh(t — 1) + b)

: a Reservoir Readout (b) Task 1 Fast
leaking rate hyper-parameter i S o e
Wi, = OTS-ESN = ")
a € (0’1] VV\?\\N/V
* smaller values for reservoirs that (c) Task 2
. Fast ] Fast
react more slowly to the input UM .5 e
Slow Traing Slow
AVAVAVAVAVS Test' V\/\./\/V
Jaegt.er, . Herbert, et al. "Optimiza.tion and Tanaka, Gouhei, et al. "Reservoir computing with diverse
applications of echo state networks with leaky- timescales for prediction of multiscale
integrator neurons.® Neural networks26.3 (2007): dynamics.” Physical Review Research 4.3 (2022): L032014.

335-352.




Input-output and output-feedback connections

y(t) = Wh(t) + V,x(t)

h(t) = o(W,x(t) + Wph(t — 1) + W, y(t — 1))

N 4 )
/k“w\p /k“w\p _
@ \h AR @\ AR h(t) = o(W,x(t) + Wp+W, Wy, )h(t — 1))
\ SO0 @ \ SO0 @ trained
J \_ )
wa 'T‘Wx FORCE: W,,; connections trained by RLS
o000 Q000 Sussillo D, Abbott LF. Generating coherent

patterns of activity from chaotic neural
networks. Neuron. 2009; 63(4): 544-557




Multiple readouts

® The reservoir is operating in
a purely unsupervised mode

® If multiple tasks involve the
same input time-series (but
different targets) the same
reservoir could be used



Good reservoirs
Can we find a better reservoir than just a random one?

® High entropy of neurons activations
o diversify the temporal response of the reservoir neurons
® Long short-term memory capacity
o latch input information effectively
® Close to the edge of chaos: reservoir at the border of stability

o Recurrent systems close to instability show optimal performances
whenever the task at hand requires long short-term memory



Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),

Cycle reservoirs /5750

reservoir
input readout
- w, |9 w, =
O > O
O O

« The architecture is further simplified: 0(1) rather than 0(N?)
« Matrix multiplications simplify to shift operations




Rodan, A. and Tino, P., 2010. Minimum
complexity echo state network. IEEE
transactions on neural networks, 22(1),

Cycle reservoirs /5750

reservoir
input readout
- w, |9 w, =
O > O
O O

The reservoir layer has an easy-to-build orthogonal structure

J(t) =D(t) P

nice eigenstructure




Deep reservoirs

Reservoir = set of nested non-linear dynamical systems

y(®) h@(t) = tanh(W"h@ (¢ — 1) + WhED (1) + bD)
\ driving input
(2)

_Q® h® (t) = tanh(W VRO (£ — 1) + WVx(¢) + bD)
h? -1

\_h<” () . - —
nD ¢ — 1)\/( ; “5 g R

x(t) 5 8 &,
3 15 g g

Gallicchio, Claudio, Alessio Micheli, and 2 ° 2 2 oz
Luca Pedrelli. "Deep reservoir computing: A 1 . .

critical experimental analysis." 02 04 06 08 1 12 14 0 220 w0 4 5
Neurocomputing 268 (2017): 87-99 Spectral Radius (p) Delay (k)




Architectural bias of depth in Recurrent Neural Nets

* Multiple time-scales
* Multiple frequencies
* Develop richer dynamics even without training of the recurrent connections

10°% o e s—— I P I
: Doep-laver i) 2y layerl . layer 4
é +Dee§..a§e,4 g % Gallicchio, Claudio, Alessio Micheli, and
@ 10* —+—Deep - layer 1 |- §3° % Luca Pedrelli. "Deep reservoir computing: A
5 (= =Shallow | §?5 ‘ ‘ ‘ ‘ I ’ ‘ » || I ‘ ‘ ‘ ‘ critical experimental analysis."
g 005 0.1 015 02 Dy 005 01 015 02 Neurocomputing 268 (2017): 87-99
[0
?’ 108 §45 45
g go layer7 layer 10
o 23 3 Gallicchio, C., Micheli, A. and Pedrelli, L.,
Q 1012 $w % 2018. Design of deep echo state networks.
) ) , , ) g2 } H 5 ‘ ‘ ‘ H Neural Networks, 108, pp.33-47.
50 100 150 200 250 300 2 2 005 o1 015 02 % 005 o1 o015 02
Time Steps Frequency (Hz) Frequency (Hz)



Architectural bias of depth in Recurrent Neural Nets

Multiple time-scales
Multiple frequencies
Develop richer dynamics even without training of the recurrent connections

OF " B | I T e | | 1
edge of chaos local Lyapunov exponents

1
Iz = maxz > In| 4, (J®)
t=1,..,T

state dynamics are closer to the edge of chaos
Amax ~ 0

ZSEEE

—deep
--shallow

10 20 30 40 50 60 70 80 90 100
Number of Recurrent Units

Gallicchio, Claudio, and Alessio Micheli. "Deep reservoir
computing." Reservoir Computing (2021): 77-95.




Euler reservoirs

Gallicchio, Claudio. "Euler state
networks." arXiv preprint
arXiv:2203.09382 (2022).

non-dissipative stable dynamics by design

hr — tanh(Wx x + Whh + b) 1. impose antisymmetric recurrent weight

matrix to enforce critical dynamics
2. discretize the ODE

step size

h(t) = h(t — 1) + & tanh(Wy x(t) +ﬂvh — W,

_

diffusion

ke 4B

untrained

dynamics are arbitrarily close to the edge of chaos




Gallicchio, Claudio. "Euler state
networks." arXiv preprint

Euler reservoirs arXiv:2203.09382 (2022).

The input signal is preserved without bridge the accuracy gap with fully trainable models
exploding nor dying
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Antisymmetric Deep Graph Networks

ODE

DGN

t=0 t=e(l—1) t=¢el t=T e
initial condition (input) final embedding
\_/\/\
S
]
Fa(xu(t))
X xu(T)
layers,
@ - X

A-DGN

=x{ a0 (W= W7 —1Dxi + B(XEN,) +b)

Long range information between nodes
No gradient vanishing/exploding
Sensible performance improvement in

applications
Diameter SSSp Eccentricity
GCN 0.742440.0466  0.9499+9.18-10~°  0.8468+0.0028
GAT 0.8221+0.0752 0.6951+0.1499 0.7909+0.0222
GraphSAGE  0.8645+0.0401 0.2863+0.1843 0.7863+0.0207
GIN 0.6131+0.0990 -0.5408+0.4193 0.9504+0.0007
Our -0.5188+0.1812 -3.2417+0.0751 0.4296+0.1003
Our(GCN) 0.2646+0402 -1.3659+0.0702 0.7177+0.0345

Gravina, Alessio, Davide Bacciu, and Claudio Gallicchio.
"Anti-Symmetric DGN: a stable architecture for Deep
Graph Networks." ICLR 2023




Log-mel spectral energies
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Postprocessing
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Moran, Alejandro, et al. "Hardware-optimized reservoir computing

system for edge intelligence applications." Cognitive
Computation (2021): 1-9.
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Integer Echo State Networks
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"Integer echo state networks: efficient reservoir computing for digital

hardware." IEEE Transactions on Neural Networks and Learning Systems 33.4 (2020): 1688-1701.




Physical Reservoir Computing

Reservoir

W SR SR S S S S S O O O O O O o, F

Physical

systems / devices

B I I

Tanaka, G., Yamane, T., Héroux, J.B., Nakane, R.,
Kanazawa, N., Takeda, S., Numata, H., Nakano, D. and
Hirose, A., 2019. Recent advances in physical reservoir
computing: A review. Neural Networks, 115, pp.100-123.
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Training Reservoirs



Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J.
and Stroobandt, D., 2008. Improving reservoirs using
intrinsic plasticity. Neurocomputing, 71(7-9), pp.1159-1171.

Intrinsic Plasticity

Memory - tanh Memory - fermi Memory - tanh

% » m ® Adapt gain and bias of the act. function

WM ® Tune the probability density of reservoir
; : : neurons to maximum entropy
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specrad I o
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MC
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Fig. 4. Resuls for all three benchmarks for tanh with spectral radius ranging (left column), exponential IP for fermi nodes (middle column), and Gaussian
IP for tanh nodes (right column).
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Plasticity improves input separation
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Full-FORCE
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Target-generating

reservoir
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f Wy, h(t — 1) + W,y(¢)
—W,h(t—1)

\?R N 7

d(t) X(t)
X(t)
B. DePasquale et al. “full-FORCE: A target-based Task-performing
method for training recurrent networks,” PloS network

ONE, vol. 13, no. 2, p. e0191527, 2018.
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H. Tamura, G. Tanaka. “partial-FORCE: a fast

and robust online training

method for

recurrent neural networks”. IJCNN 2021




Phase Transition Adaptation

Train echo state networks to the edge of chaos

h(t) = tanh(a©®@(Wih(t — 1) + W,x(t)) + b)

—_— w=0.01
— w=0.1

Memory Capacity
3 3 3

N
o
1

—_—w=1

local learning of gain and bias
cycle reservoirs: the eigenstructure
is easily adapted

C. Gallicchio, A. Micheli, L. Silvestri. “Phase
Transition Adaptation”. IJCNN 2021



Homeostatic regulation

autonomous adaptation of the spectral radius during external input
stimulation

F. Schubert, C. Gros. “Local
homeostatic regulation of
the spectral radius of
echo-state networks”.
Frontiers in Computational
Neuroscience, 2021

heterogeneous gaussian input

Im(A7)

B complex eigenvalues

-5 -1.0 -05 00 05 1.0 15

Re(A))



Federated Reservoir
Computing



Readout training: online

Least Mean Squares (LMS) is not practically used due to
high eigenvalue spread of HH”
Recursive Least Squares (RLS) algorithm

1. Computation of the gain vector: e , id(k)
: ; 1u(k) y(k)
—w-! Yret (R) | Quadratic Au(k) .u( ol
uz) = ¥, (n — Dx(n) _:_) Programming ¥ > Process >
1 .
k(n) = m“(n) E TG(k) Tyfree(k)
2. Filtering: E Linearization kz:]?j?:g:e z71 ({I—
Faor () = W' (n = Dx(n) A ¥ :
3. Error estimation: [ )RR R R Rk Lo
; ; S AV VI
é,_1(n) =d(n) —3,_,(n) Vil Model )€
4. Tap-weight vector adaptation: v e 5 .
. . X i RLS = :
W(n) = Wn —1) +kmeé,_,(n) D | Estimator | —
i Online ESN +

5. W; ' (n) update: AL

¥ () = Tri (A7 (¥ (n = 1) — k(m)u" (n))}
Schwedersky et al."Adaptive practical nonlinear model predictive control for echo state
Farhang-Boroujeny, Behrouz. Adaptive filters: theory and network models." IEEE Transactions on Neural Networks and Learning Systems 33.6
applications. John Wiley & Sons, 2013. (2021): 2605-2614.




Readout training: offline

® Closed form solution

H =

| |
h(l) .. h(T)] D=
| |

states targets

o Moore-Penrose pseudo-inversion
W,,,=DH"= DH'(HH")1
o Ridge-regression
W,,, =DHI(HH" + 2D

m /is a Tikhonov regularization coefficient

| |
(1) .. d(T)‘
| |




Readout training: offline

® Incremental learning
Woue =D HT(HHT +AD7 1

\ HH = ) B;
ZDHT ZA z z

ieC ieEC

IEC ieC

Woue = (), A) (z B+ l)

-1




Incremental Federated Learning - IncFed

S 4,8,

B*” = B; + By YQWMQOY V..,

@ O PP DT TEELLLE —--

“““ -— e

S
“/

A3V = A3 + A3
B3®" = B; + B3

P

Training data is not
transferred from the clients
to the server

The learned solution is
mathematically equivalent
to centralized learning

L B
&? Sap, ~ Wou= (Z ) (Z B, +u>

Bacciu, Davide, et al. "Federated reservoir computing neural networks." 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 2021.




Federated Intrinsic Plasticity - FedIP

Variant of the IP learning rule for federated scenarios

%TR WESAD HHAR

w/o FedIP | w/ FedIP | w/o FedIP | w/ FedIP
25% | 72.09+059 | 78.68 +0.12 | 57.08 £3.11 | 69.83 +0.64
50% | 72.04+103 | 7743019 | 63.88+6.02 | 57.74 +0.19
75% | 76.53 108 | 77.97 041 | 71.09 056 | 71.08 +0.69
100% | 77.78 z058 | 79.42+039 | 70.29 +099 | 71.38 +0.43

V. De Caro, C. Gallicchio, D. Bacciu. “Federated adaptation

of reservoirs via intrinsic plasticity” ESANN 2022




-
Torch-ESN

build(self, dataset batch_size: int) ->

self.wrapper = \ (dataset, self.id, batch_size)

train(self, : float 1 : float, eta: , epochs:
ile :
= self.receive().body|
reservoir = self.wrapper.ip_step(

reservoir=reservoir, mu=mu, sigma=sigma, eta=eta, epochs=epochs

)
state_dict = reservoir.state_dict()
n_samples = self.wrapper.get_dataset_size()
self.send(
header="1ip
body:
: state_dict["net_:
state_dict!("ne
: n_samples,

train(self, reservoir:
ip_aggregator = FedAvgAggregator()

while True:

self.send("rese e M l'": reservoir})

ip_aggregator.setup(self.neighbors)

while ip_aggregator.ready:
ip_aggregator(self.receivel())

ip_params = ip_aggregator.compute()

reservoir.load_state_dict(ip_params, strict=s

self.update_version(reservoir=reservoir)

federation = ESNF
dataset=dataset,
batch_size=batch_size,
n_clients_or_id
roles=["train"
)
reservoir = Re (*kreservoir_params)
federation.ip_train(reservoir, mu, sigma, eta, epochs)
for r in e(rounds):
model = federation.pull_version()["
federation.stop()



Further Advances



Giga-computations per Joule (32-bit Multiply Accumulate)

Energy efficiency

100 Next Generation
Application Need | | A
-)ssnm—}-ﬁm'l&nm-) ?? nm

130 nm ->» 90 nm -

Current trends will not
meet application need!

10 ‘ *
-(EfﬁciencyWaIl )---- -ow-- o

Marr, Bo, et al.
"Scaling energy per
operation via an

tms320c6412-500 i

1 : VI/ e Processor Survey asynchronous
Pentium 4 ee HT 3.2 % - X700 Curve Fit pipeline." IEEE
- = = Koomey's Law Transactions on Very
Large Scale

Integration (VLSI)
Systems 21.1 (2012):
147-151.
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Energy consumption matters!

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

Petaflop/s-days

let+h
Lers AlphaGoZero e
et
L]
AlphaZero
le+2

Neural Machine
Translation

® 2012-2017: 300000x
® 3.4-month doubling time

Visualizing and .
1e-2 Understanding Conv GoogleNet
AlexNet ets
L]

Dot Dario Amodei and Danny Hernandez. Al
and compute, 2018. Blog post.

«DQN

https://openai.com/blog/ai-and-compute/

2012 2013 2014 2015 2016 2017 2018



Green Al

Roy Schwartz*¢  Jesse Dodge*** Noah A. Smith®®  Oren Etzioni®

®Allen Institute for Al, Seattle, Washington, USA
* Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2 University of Washington, Seattle, Washington, USA

July 2019

Abstract

The computations required for deep learning research have been doubling every few months, resulting in an
estimated 300,000x increase from 2012 to 2018 [2]. These computations have a surprisingly large carbon footprint
[40]. Ironically, deep learning was inspired by the human brain, which is remarkably energy efficient. Moreover, the
financial cost of the computations can make it difficult for academics, students, and researchers, in particular those
from emerging economies, to engage in deep learning research.

This position paper advocates a practical solution by making efficiency an evaluation criterion for research along- SChwartZ’ Roya et al
side accuracy and related measures. In addition, we propose reporting the financial cost or “price tag” of developing, Green al." arXiv prepr int
training, and running models to provide baselines for the investigation of increasingly efficient methods. Our goalis  5,%j\,-100)7. 10597 ( 201 9)
to make Al both greener and more inclusive—enabling any inspired undergraduate with a laptop to write high-quality
research papers. Green Al is an emerging focus at the Allen Institute for Al



Quantifying the carbon emissions of ML

Compute Publish Learn Act About

COMPUTE YOUR ML CARBON IMPACT

https://mlco2.github.io/impact/

Machine Learning Emissions Calculator

Choose your hardware, runtime and cloud provider to estimate the carbon impact of your research.

This calculator will give you 2 numbers: the raw carbon emissions produced and the approximate offset
carbon emissions. The latter number depends on the grid used by the cloud provider and we are open to
update our estimates if anything looks inaccurate or outdated.

Hardware type Hours Used Provider Region of Compute LaCOSte, Alexand re, et al.

"Quantifying the carbon

emissions of machine
learning." arXiv preprint
compuTE arXiv:1910.09700 (2019).




Energy consumption matters!

Artificial intelligence / Machine learning

Training a single Al model
can emit as much carbon

ImageNet Training in 24 Minutes

Yang You, Zhao Zhang, James Demmel, Kurt Keutzer, Cho-Jui Hsieh
(Submitted on 14 Sep 2017)

as five cars in their
lifetimes

Deep learning has a terrible carbon footprint.

by KarenHao June 6,2019

The artificial-intelligence industry is often compared to the oil industry: once
mined and refined. data, like oil, can be a highly lucrative commodity.
Now it seems the metaphor may extend even further. Like its fossil-fuel
counterpart, the process of deep learning has an outsize environmental
impact.

Finishing 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU takes 14 days.
This training requires 10*18 single precision operations in total. On the other hand, the world's
current fastest supercomputer can finish 2 * 10*17 single precision operations per second
{Dongarra et al 2017). If we can make full use of the supercomputer for DNN training. we should
be able to finish the 90-epoch ResNet-50 training in five seconds. However, the current bottleneck
for fast DNN training is in the algorithm level. Specifically, the current batch size (e.g. 512) is too
small to make efficient use of many processors

For large-scale DNN training, we focus on using large-batch data-parallelism synchronous SGD
without losing accuracy in the fixed epochs. The LARS algorithm (You, Gitman, Ginsburg, 2017)
enables us to scale the batch size to extremely large case (e.g. 32K). We finish the 100-epoch
lmageNet trammg with AlexNet in 24 minutes, which is the world record Same as Facebook‘

However, our hardware budget is only 1.2 million USD, which is 3.4 times lower than Facebook's
w

4.1 million USD.




~30 PFlops
10 MW vs 20 W

vs the Brain...

2

memory and computing are co-located
10! neurons, 10%° synapses
10000 synapses/neuron




Running DL architectures
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NNs in neuromorphic HW

> activations

circuit for adjusting the free parameters

time
synchronicity of the layers operations in the

circuit for the forward path
2. memory to store neurons

circuit for the backward path

forward & backward passes

3
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Neuromorphic chip: Photonics

Optical npu Opisl Outpr
S | ) * neurons implemented by optical

____________________________________ * the flow of information is light

T > ; '_";;ﬁ'c;,};;n;,',;a;;y}},;{:‘i * synapses implemented by multiple

il A f - interferometers or transmission of

T TEEN O T fu optical waveguides

________ Optical Inteference Unit -~ e ]

De Marinis, Lorenzo, et al. "Photonic neural

; ¢ — networks: a survey." |I[EEE Access 7 (2019):

yaN yaN : 175827-175841.




Neuromorphic chip: CMOS with Memristors

input
—
neurons implemented in CMOS " @
the flowing information is v @
electrical current v @
synapses implemented as o
memristors ®

o nanoscale resistors
o non-volatile analog conductance

states “““l

i

ndino




Neuromorphic chip: Spintronics

® magnetic Nnano-neurons

® synapses implemented as radiowaves
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Spin precession ‘<__4 _’ i(?) _L

DC bias Io-l—

Free layer
Insulator

Pinned layer '

Torrejon, Jacob, et al. "Neuromorphic computing with nanoscale
spintronic oscillators." Nature 547.7664 (2017): 428-431.

Locatelli, Nicolas, Vincent Cros, and Julie Grollier. "Spin-torque
building blocks." Nature materials 13.1 (2014): 11-20.
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Mechanical systems

® Neural Networks implemented by physical bodies or soft robots

?;. “;"- motor
c ®©
f == comman
EENNENIEEOTNERICTIN - (fY @3 seseessssssesseeccsafasgreessessssssssssesssseosee e s
nonlinear mass-spring systems
— =m
il §
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—> T o napeepna—| [ 1) ) v i R P, o m— i
. 5 bias Y -
physical body 33
\_ J £3
output
Hauser, Helmut, et al. "Towards a theoretical foundation for Nakajima, Kohei, et al. "Information processing via

morphological computation with compliant bodies." Biological physical soft body." Scientific reports 5.1 (2015): 1-11.
cybernetics 105.5 (2011): 355-370.




Biological systems

® Neural Networks implemented on in vitro biological components

Electrode Electrode

input

output

Cultured cells

Tanaka, Gouhei, et al. "Recent advances in physical reservoir computing:
A review." Neural Networks 115 (2019): 100-123. o ) ,

Hafizovic, Sadik, et al. "A CMOS-based microelectrode
Obien, Marie Engelene J., et al. "Revealing neuronal function through array for interaction with neuronal c.ultures." Journal of
microelectrode array recordings." Frontiers in neuroscience 8 (2015): 423. neuroscience methods 164.1 (2007): 93-106.




Beyond backpropagation

® Memory overhead for storing the neural activations
® Sequentiality and synchronicity of forward & backward passes
® Weight transport problem: forward-backward weight symmetry

® Biological implausible
o no evidence for derivatives propagation
o no evidence for storing neural activations
o no evidence for mirrored connections (top-down # bottom-up)



Forward Forward

® Local goodness X ; hf

DG

ANKT

TAVAY

0K <0 K
R
FRAK

hj2 —0))
increase the

(2;

+

@® Localloss function £ = a(

@® “positive” forward pass:

goodness of each layer for real data
@® “negative” forward pass: reduce the

"The forward-forward algorithm: Some preliminary

investigations." arXiv preprint arXiv:2212.13345(2022).

Hinton, Geoffrey.

goodness of each layer for wrong data

WA OA=

: X
A %oﬁﬂuz--.”w.
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target:

negative

positive



Prediction y=h;-t]
L(hs,t3)
FOWylhats] + )
L(h,,t,)
fW3[hy,t1]+ by)
L(h,,t,)

[0,0,1,-]
% [1,0,0, 1] X C
Training/Inference

a) Output Target

y=W3zh; +b,

"@:
= =
e
>
N
s

L(hl!t’l)

X Cc
Training

SigProp

@® every layer processes both input

y=W3h; +b,
L(y) and learning signal
@ < O  h; - output of the layer
L(hyt,) O t; -target for the layer
@ h17t1 = f(Wlm + bl), f(Slcm —+ dl)
= [ha, ta] = f(Walhy, t1] + bs)
&] h, :
[h3,t3] = f(W3lha,t2] + b2)
X - ® localloss

Inference

b) Classification Layer

Training/Inference

L(h;, t;) = CE(Y{, 040t (hy, t;))

c) Target Loop

Kohan, Adam, Edward A. Rietman, and Hava T. Siegelmann.
"Forward  Signal  Propagation  Learning." arXiv  preprint
arXiv:2204.01723 (2022).




Equilibrium Propagation

ly — d||*. F:=E+ 8C

1
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Scellier, Benjamin, and Yoshua Bengio. "Equilibrium propagation: Bridging

the gap between energy-based models and backpropagation." Frontiers in

computational neuroscience 11 (2017): 24.

Laydevant, Jérémie, et al. "Training Dynamical Binary Neural Networks

IEEE/CVF

Proceedings of the
Conference on Computer Vision and Pattern Recognition. 2021.

with  Equilibrium Propagation.”




Conclusions



Conclusions

® Leverage principled architectural biases of dynamical systems
for fast computation in sequential data

® Hardware-Software co-design
o activation functions, weight quantization, architecture & topology
o cyclic, deep, Euler reservoirs
® Simplified training algorithms & learning beyond backprop

o Local adaptation, Federated learning
o Intrinsic Plasticity, FORCE, Forward-forward, SigProp, ...



